1SLAED5(1) LAPACK routine (version 3.2) SLAED5(1)
2
3
4
6 SLAED5 - subroutine compute the I-th eigenvalue of a symmetric rank-one
7 modification of a 2-by-2 diagonal matrix diag( D ) + RHO The diago‐
8 nal elements in the array D are assumed to satisfy D(i) < D(j) for i
9 < j
10
12 SUBROUTINE SLAED5( I, D, Z, DELTA, RHO, DLAM )
13
14 INTEGER I
15
16 REAL DLAM, RHO
17
18 REAL D( 2 ), DELTA( 2 ), Z( 2 )
19
21 This subroutine computes the I-th eigenvalue of a symmetric rank-one
22 modification of a 2-by-2 diagonal matrix We also assume RHO > 0 and
23 that the Euclidean norm of the vector Z is one.
24
26 I (input) INTEGER
27 The index of the eigenvalue to be computed. I = 1 or I = 2.
28
29 D (input) REAL array, dimension (2)
30 The original eigenvalues. We assume D(1) < D(2).
31
32 Z (input) REAL array, dimension (2)
33 The components of the updating vector.
34
35 DELTA (output) REAL array, dimension (2)
36 The vector DELTA contains the information necessary to construct
37 the eigenvectors.
38
39 RHO (input) REAL
40 The scalar in the symmetric updating formula.
41
42 DLAM (output) REAL
43 The computed lambda_I, the I-th updated eigenvalue.
44
46 Based on contributions by
47 Ren-Cang Li, Computer Science Division, University of California
48 at Berkeley, USA
49
50
51
52 LAPACK routine (version 3.2) November 2008 SLAED5(1)