1SLAED5(1)                LAPACK routine (version 3.1)                SLAED5(1)
2
3
4

NAME

6       SLAED5  - compute the I-th eigenvalue of a symmetric rank-one modifica‐
7       tion of a 2-by-2 diagonal matrix   diag( D ) + RHO  The  diagonal  ele‐
8       ments in the array D are assumed to satisfy   D(i) < D(j) for i < j
9

SYNOPSIS

11       SUBROUTINE SLAED5( I, D, Z, DELTA, RHO, DLAM )
12
13           INTEGER        I
14
15           REAL           DLAM, RHO
16
17           REAL           D( 2 ), DELTA( 2 ), Z( 2 )
18

PURPOSE

20       This  subroutine  computes  the I-th eigenvalue of a symmetric rank-one
21       modification of a 2-by-2 diagonal matrix
22
23       We also assume RHO > 0 and that the Euclidean norm of the vector  Z  is
24       one.
25
26

ARGUMENTS

28       I      (input) INTEGER
29              The index of the eigenvalue to be computed.  I = 1 or I = 2.
30
31       D      (input) REAL array, dimension (2)
32              The original eigenvalues.  We assume D(1) < D(2).
33
34       Z      (input) REAL array, dimension (2)
35              The components of the updating vector.
36
37       DELTA  (output) REAL array, dimension (2)
38              The vector DELTA contains the information necessary to construct
39              the eigenvectors.
40
41       RHO    (input) REAL
42              The scalar in the symmetric updating formula.
43
44       DLAM   (output) REAL
45              The computed lambda_I, the I-th updated eigenvalue.
46

FURTHER DETAILS

48       Based on contributions by
49          Ren-Cang Li, Computer Science Division, University of California
50          at Berkeley, USA
51
52
53
54
55 LAPACK routine (version 3.1)    November 2006                       SLAED5(1)
Impressum