1SLAED5(1) LAPACK routine (version 3.1) SLAED5(1)
2
3
4
6 SLAED5 - compute the I-th eigenvalue of a symmetric rank-one modifica‐
7 tion of a 2-by-2 diagonal matrix diag( D ) + RHO The diagonal ele‐
8 ments in the array D are assumed to satisfy D(i) < D(j) for i < j
9
11 SUBROUTINE SLAED5( I, D, Z, DELTA, RHO, DLAM )
12
13 INTEGER I
14
15 REAL DLAM, RHO
16
17 REAL D( 2 ), DELTA( 2 ), Z( 2 )
18
20 This subroutine computes the I-th eigenvalue of a symmetric rank-one
21 modification of a 2-by-2 diagonal matrix
22
23 We also assume RHO > 0 and that the Euclidean norm of the vector Z is
24 one.
25
26
28 I (input) INTEGER
29 The index of the eigenvalue to be computed. I = 1 or I = 2.
30
31 D (input) REAL array, dimension (2)
32 The original eigenvalues. We assume D(1) < D(2).
33
34 Z (input) REAL array, dimension (2)
35 The components of the updating vector.
36
37 DELTA (output) REAL array, dimension (2)
38 The vector DELTA contains the information necessary to construct
39 the eigenvectors.
40
41 RHO (input) REAL
42 The scalar in the symmetric updating formula.
43
44 DLAM (output) REAL
45 The computed lambda_I, the I-th updated eigenvalue.
46
48 Based on contributions by
49 Ren-Cang Li, Computer Science Division, University of California
50 at Berkeley, USA
51
52
53
54
55 LAPACK routine (version 3.1) November 2006 SLAED5(1)