1SLAGTM(1) LAPACK auxiliary routine (version 3.2) SLAGTM(1)
2
3
4
6 SLAGTM - performs a matrix-vector product of the form B := alpha * A
7 * X + beta * B where A is a tridiagonal matrix of order N, B and X are
8 N by NRHS matrices, and alpha and beta are real scalars, each of which
9 may be 0., 1., or -1
10
12 SUBROUTINE SLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B,
13 LDB )
14
15 CHARACTER TRANS
16
17 INTEGER LDB, LDX, N, NRHS
18
19 REAL ALPHA, BETA
20
21 REAL B( LDB, * ), D( * ), DL( * ), DU( * ), X( LDX, * )
22
24 SLAGTM performs a matrix-vector product of the form
25
27 TRANS (input) CHARACTER*1
28 Specifies the operation applied to A. = 'N': No transpose, B
29 := alpha * A * X + beta * B
30 = 'T': Transpose, B := alpha * A'* X + beta * B
31 = 'C': Conjugate transpose = Transpose
32
33 N (input) INTEGER
34 The order of the matrix A. N >= 0.
35
36 NRHS (input) INTEGER
37 The number of right hand sides, i.e., the number of columns of
38 the matrices X and B.
39
40 ALPHA (input) REAL
41 The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, it
42 is assumed to be 0.
43
44 DL (input) REAL array, dimension (N-1)
45 The (n-1) sub-diagonal elements of T.
46
47 D (input) REAL array, dimension (N)
48 The diagonal elements of T.
49
50 DU (input) REAL array, dimension (N-1)
51 The (n-1) super-diagonal elements of T.
52
53 X (input) REAL array, dimension (LDX,NRHS)
54 The N by NRHS matrix X. LDX (input) INTEGER The leading
55 dimension of the array X. LDX >= max(N,1).
56
57 BETA (input) REAL
58 The scalar beta. BETA must be 0., 1., or -1.; otherwise, it is
59 assumed to be 1.
60
61 B (input/output) REAL array, dimension (LDB,NRHS)
62 On entry, the N by NRHS matrix B. On exit, B is overwritten by
63 the matrix expression B := alpha * A * X + beta * B.
64
65 LDB (input) INTEGER
66 The leading dimension of the array B. LDB >= max(N,1).
67
68
69
70 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008 SLAGTM(1)