1SLAGTM(1) LAPACK auxiliary routine (version 3.1) SLAGTM(1)
2
3
4
6 SLAGTM - a matrix-vector product of the form B := alpha * A * X +
7 beta * B where A is a tridiagonal matrix of order N, B and X are N by
8 NRHS matrices, and alpha and beta are real scalars, each of which may
9 be 0., 1., or -1
10
12 SUBROUTINE SLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B,
13 LDB )
14
15 CHARACTER TRANS
16
17 INTEGER LDB, LDX, N, NRHS
18
19 REAL ALPHA, BETA
20
21 REAL B( LDB, * ), D( * ), DL( * ), DU( * ), X( LDX, * )
22
24 SLAGTM performs a matrix-vector product of the form
25
26
28 TRANS (input) CHARACTER*1
29 Specifies the operation applied to A. = 'N': No transpose, B
30 := alpha * A * X + beta * B
31 = 'T': Transpose, B := alpha * A'* X + beta * B
32 = 'C': Conjugate transpose = Transpose
33
34 N (input) INTEGER
35 The order of the matrix A. N >= 0.
36
37 NRHS (input) INTEGER
38 The number of right hand sides, i.e., the number of columns of
39 the matrices X and B.
40
41 ALPHA (input) REAL
42 The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, it
43 is assumed to be 0.
44
45 DL (input) REAL array, dimension (N-1)
46 The (n-1) sub-diagonal elements of T.
47
48 D (input) REAL array, dimension (N)
49 The diagonal elements of T.
50
51 DU (input) REAL array, dimension (N-1)
52 The (n-1) super-diagonal elements of T.
53
54 X (input) REAL array, dimension (LDX,NRHS)
55 The N by NRHS matrix X. LDX (input) INTEGER The leading
56 dimension of the array X. LDX >= max(N,1).
57
58 BETA (input) REAL
59 The scalar beta. BETA must be 0., 1., or -1.; otherwise, it is
60 assumed to be 1.
61
62 B (input/output) REAL array, dimension (LDB,NRHS)
63 On entry, the N by NRHS matrix B. On exit, B is overwritten by
64 the matrix expression B := alpha * A * X + beta * B.
65
66 LDB (input) INTEGER
67 The leading dimension of the array B. LDB >= max(N,1).
68
69
70
71 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 SLAGTM(1)