1SLARRB(1)           LAPACK auxiliary routine (version 3.2)           SLARRB(1)
2
3
4

NAME

6       SLARRB - the relatively robust representation(RRR) L D L^T, SLARRB does
7       "limited" bisection to refine the eigenvalues of L D L^T,
8

SYNOPSIS

10       SUBROUTINE SLARRB( N, D, LLD, IFIRST, ILAST, RTOL1, RTOL2,  OFFSET,  W,
11                          WGAP, WERR, WORK, IWORK, PIVMIN, SPDIAM, TWIST, INFO
12                          )
13
14           INTEGER        IFIRST, ILAST, INFO, N, OFFSET, TWIST
15
16           REAL           PIVMIN, RTOL1, RTOL2, SPDIAM
17
18           INTEGER        IWORK( * )
19
20           REAL           D( * ), LLD( * ), W( * ), WERR(  *  ),  WGAP(  *  ),
21                          WORK( * )
22

PURPOSE

24       Given  the  relatively  robust representation(RRR) L D L^T, SLARRB does
25       "limited" bisection to refine the eigenvalues of L D  L^T,  W(  IFIRST-
26       OFFSET  )  through W( ILAST-OFFSET ), to more accuracy. Initial guesses
27       for these eigenvalues are input in W, the corresponding estimate of the
28       error  in  these  guesses  and  their  gaps are input in WERR and WGAP,
29       respectively. During bisection, intervals
30       [left, right] are maintained by  storing  their  mid-points  and  semi-
31       widths in the arrays W and WERR respectively.
32

ARGUMENTS

34       N       (input) INTEGER
35               The order of the matrix.
36
37       D       (input) REAL             array, dimension (N)
38               The N diagonal elements of the diagonal matrix D.
39
40       LLD     (input) REAL             array, dimension (N-1)
41               The (N-1) elements L(i)*L(i)*D(i).
42
43       IFIRST  (input) INTEGER
44               The index of the first eigenvalue to be computed.
45
46       ILAST   (input) INTEGER
47               The index of the last eigenvalue to be computed.
48
49       RTOL1   (input) REAL
50               RTOL2    (input)  REAL  Tolerance  for  the  convergence of the
51               bisection intervals.  An interval [LEFT,RIGHT] has converged if
52               RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) where
53               GAP is the (estimated) distance to the nearest eigenvalue.
54
55       OFFSET  (input) INTEGER
56               Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET
57               through ILAST-OFFSET elements of these arrays are to be used.
58
59       W       (input/output) REAL             array, dimension (N)
60               On  input,  W(  IFIRST-OFFSET  )  through W( ILAST-OFFSET ) are
61               estimates of the eigenvalues of L D L^T indexed  IFIRST  throug
62               ILAST.  On output, these estimates are refined.
63
64       WGAP    (input/output) REAL             array, dimension (N-1)
65               On  input, the (estimated) gaps between consecutive eigenvalues
66               of L D L^T, i.e., WGAP(I-OFFSET) is the gap between eigenvalues
67               I  and  I+1. Note that if IFIRST.EQ.ILAST then WGAP(IFIRST-OFF‐
68               SET) must be set to ZERO.  On output, these gaps are refined.
69
70       WERR    (input/output) REAL             array, dimension (N)
71               On input, WERR( IFIRST-OFFSET ) through  WERR(  ILAST-OFFSET  )
72               are  the  errors in the estimates of the corresponding elements
73               in W.  On output, these errors are refined.
74
75       WORK    (workspace) REAL             array, dimension (2*N)
76               Workspace.
77
78       IWORK   (workspace) INTEGER array, dimension (2*N)
79               Workspace.
80
81       PIVMIN  (input) DOUBLE PRECISION
82               The minimum pivot in the Sturm sequence.
83
84       SPDIAM  (input) DOUBLE PRECISION
85               The spectral diameter of the matrix.
86
87       TWIST   (input) INTEGER
88               The twist index for the twisted factorization that is used  for
89               the  negcount.   TWIST  =  N:  Compute  negcount from L D L^T -
90               LAMBDA I = L+ D+ L+^T
91               TWIST = 1: Compute negcount from L D L^T - LAMBDA  I  =  U-  D-
92               U-^T
93               TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r)
94               N(r)
95
96       INFO    (output) INTEGER
97               Error flag.
98

FURTHER DETAILS

100       Based on contributions by
101          Beresford Parlett, University of California, Berkeley, USA
102          Jim Demmel, University of California, Berkeley, USA
103          Inderjit Dhillon, University of Texas, Austin, USA
104          Osni Marques, LBNL/NERSC, USA
105          Christof Voemel, University of California, Berkeley, USA
106
107
108
109 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008                       SLARRB(1)
Impressum