1SLARRB(1)           LAPACK auxiliary routine (version 3.1)           SLARRB(1)
2
3
4

NAME

6       SLARRB  -  relatively  robust  representation(RRR) L D L^T, SLARRB does
7       "limited" bisection to refine the eigenvalues of L D L^T,
8

SYNOPSIS

10       SUBROUTINE SLARRB( N, D, LLD, IFIRST, ILAST, RTOL1, RTOL2,  OFFSET,  W,
11                          WGAP, WERR, WORK, IWORK, PIVMIN, SPDIAM, TWIST, INFO
12                          )
13
14           INTEGER        IFIRST, ILAST, INFO, N, OFFSET, TWIST
15
16           REAL           PIVMIN, RTOL1, RTOL2, SPDIAM
17
18           INTEGER        IWORK( * )
19
20           REAL           D( * ), LLD( * ), W( * ), WERR(  *  ),  WGAP(  *  ),
21                          WORK( * )
22

PURPOSE

24       Given  the  relatively  robust representation(RRR) L D L^T, SLARRB does
25       "limited" bisection to refine the eigenvalues of L D  L^T,  W(  IFIRST-
26       OFFSET  )  through W( ILAST-OFFSET ), to more accuracy. Initial guesses
27       for these eigenvalues are input in W, the corresponding estimate of the
28       error  in  these  guesses  and  their  gaps are input in WERR and WGAP,
29       respectively. During bisection, intervals
30       [left, right] are maintained by  storing  their  mid-points  and  semi-
31       widths in the arrays W and WERR respectively.
32
33

ARGUMENTS

35       N       (input) INTEGER
36               The order of the matrix.
37
38       D       (input) REAL             array, dimension (N)
39               The N diagonal elements of the diagonal matrix D.
40
41       LLD     (input) REAL             array, dimension (N-1)
42               The (N-1) elements L(i)*L(i)*D(i).
43
44       IFIRST  (input) INTEGER
45               The index of the first eigenvalue to be computed.
46
47       ILAST   (input) INTEGER
48               The index of the last eigenvalue to be computed.
49
50       RTOL1   (input) REAL
51               RTOL2    (input)  REAL  Tolerance  for  the  convergence of the
52               bisection intervals.  An interval [LEFT,RIGHT] has converged if
53               RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) where
54               GAP is the (estimated) distance to the nearest eigenvalue.
55
56       OFFSET  (input) INTEGER
57               Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET
58               through ILAST-OFFSET elements of these arrays are to be used.
59
60       W       (input/output) REAL             array, dimension (N)
61               On  input,  W(  IFIRST-OFFSET  )  through W( ILAST-OFFSET ) are
62               estimates of the eigenvalues of L D L^T indexed  IFIRST  throug
63               ILAST.  On output, these estimates are refined.
64
65       WGAP    (input/output) REAL             array, dimension (N-1)
66               On  input, the (estimated) gaps between consecutive eigenvalues
67               of L D L^T, i.e., WGAP(I-OFFSET) is the gap between eigenvalues
68               I  and  I+1. Note that if IFIRST.EQ.ILAST then WGAP(IFIRST-OFF‐
69               SET) must be set to ZERO.  On output, these gaps are refined.
70
71       WERR    (input/output) REAL             array, dimension (N)
72               On input, WERR( IFIRST-OFFSET ) through  WERR(  ILAST-OFFSET  )
73               are  the  errors in the estimates of the corresponding elements
74               in W.  On output, these errors are refined.
75
76       WORK    (workspace) REAL             array, dimension (2*N)
77               Workspace.
78
79       IWORK   (workspace) INTEGER array, dimension (2*N)
80               Workspace.
81
82       PIVMIN  (input) DOUBLE PRECISION
83               The minimum pivot in the Sturm sequence.
84
85       SPDIAM  (input) DOUBLE PRECISION
86               The spectral diameter of the matrix.
87
88       TWIST   (input) INTEGER
89               The twist index for the twisted factorization that is used  for
90               the  negcount.   TWIST  =  N:  Compute  negcount from L D L^T -
91               LAMBDA I = L+ D+ L+^T
92               TWIST = 1: Compute negcount from L D L^T - LAMBDA  I  =  U-  D-
93               U-^T
94               TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r)
95               N(r)
96
97       INFO    (output) INTEGER
98               Error flag.
99

FURTHER DETAILS

101       Based on contributions by
102          Beresford Parlett, University of California, Berkeley, USA
103          Jim Demmel, University of California, Berkeley, USA
104          Inderjit Dhillon, University of Texas, Austin, USA
105          Osni Marques, LBNL/NERSC, USA
106          Christof Voemel, University of California, Berkeley, USA
107
108
109
110
111 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                       SLARRB(1)
Impressum