1SLASD5(1) LAPACK auxiliary routine (version 3.2) SLASD5(1)
2
3
4
6 SLASD5 - subroutine compute the square root of the I-th eigenvalue of a
7 positive symmetric rank-one modification of a 2-by-2 diagonal matrix
8 diag( D ) * diag( D ) + RHO The diagonal entries in the array D are
9 assumed to satisfy 0 <= D(i) < D(j) for i < j
10
12 SUBROUTINE SLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
13
14 INTEGER I
15
16 REAL DSIGMA, RHO
17
18 REAL D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
19
21 This subroutine computes the square root of the I-th eigenvalue of a
22 positive symmetric rank-one modification of a 2-by-2 diagonal matrix We
23 also assume RHO > 0 and that the Euclidean norm of the vector Z is one.
24
26 I (input) INTEGER
27 The index of the eigenvalue to be computed. I = 1 or I = 2.
28
29 D (input) REAL array, dimension (2)
30 The original eigenvalues. We assume 0 <= D(1) < D(2).
31
32 Z (input) REAL array, dimension (2)
33 The components of the updating vector.
34
35 DELTA (output) REAL array, dimension (2)
36 Contains (D(j) - sigma_I) in its j-th component. The vector
37 DELTA contains the information necessary to construct the eigenā
38 vectors.
39
40 RHO (input) REAL
41 The scalar in the symmetric updating formula. DSIGMA (output)
42 REAL The computed sigma_I, the I-th updated eigenvalue.
43
44 WORK (workspace) REAL array, dimension (2)
45 WORK contains (D(j) + sigma_I) in its j-th component.
46
48 Based on contributions by
49 Ren-Cang Li, Computer Science Division, University of California
50 at Berkeley, USA
51
52
53
54 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008 SLASD5(1)