1SLASD5(1)           LAPACK auxiliary routine (version 3.2)           SLASD5(1)
2
3
4

NAME

6       SLASD5 - subroutine compute the square root of the I-th eigenvalue of a
7       positive symmetric rank-one modification of a  2-by-2  diagonal  matrix
8       diag(  D  )  * diag( D ) + RHO  The diagonal entries in the array D are
9       assumed to satisfy   0 <= D(i) < D(j) for i < j
10

SYNOPSIS

12       SUBROUTINE SLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
13
14           INTEGER        I
15
16           REAL           DSIGMA, RHO
17
18           REAL           D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
19

PURPOSE

21       This subroutine computes the square root of the I-th  eigenvalue  of  a
22       positive symmetric rank-one modification of a 2-by-2 diagonal matrix We
23       also assume RHO > 0 and that the Euclidean norm of the vector Z is one.
24

ARGUMENTS

26       I      (input) INTEGER
27              The index of the eigenvalue to be computed.  I = 1 or I = 2.
28
29       D      (input) REAL array, dimension (2)
30              The original eigenvalues.  We assume 0 <= D(1) < D(2).
31
32       Z      (input) REAL array, dimension (2)
33              The components of the updating vector.
34
35       DELTA  (output) REAL array, dimension (2)
36              Contains (D(j) - sigma_I) in its  j-th  component.   The  vector
37              DELTA contains the information necessary to construct the eigenā€
38              vectors.
39
40       RHO    (input) REAL
41              The scalar in the symmetric updating formula.   DSIGMA  (output)
42              REAL The computed sigma_I, the I-th updated eigenvalue.
43
44       WORK   (workspace) REAL array, dimension (2)
45              WORK contains (D(j) + sigma_I) in its  j-th component.
46

FURTHER DETAILS

48       Based on contributions by
49          Ren-Cang Li, Computer Science Division, University of California
50          at Berkeley, USA
51
52
53
54 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008                       SLASD5(1)
Impressum