1SLASD5(1) LAPACK auxiliary routine (version 3.1) SLASD5(1)
2
3
4
6 SLASD5 - compute the square root of the I-th eigenvalue of a positive
7 symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D )
8 * diag( D ) + RHO The diagonal entries in the array D are assumed to
9 satisfy 0 <= D(i) < D(j) for i < j
10
12 SUBROUTINE SLASD5( I, D, Z, DELTA, RHO, DSIGMA, WORK )
13
14 INTEGER I
15
16 REAL DSIGMA, RHO
17
18 REAL D( 2 ), DELTA( 2 ), WORK( 2 ), Z( 2 )
19
21 This subroutine computes the square root of the I-th eigenvalue of a
22 positive symmetric rank-one modification of a 2-by-2 diagonal matrix
23
24 We also assume RHO > 0 and that the Euclidean norm of the vector Z is
25 one.
26
27
29 I (input) INTEGER
30 The index of the eigenvalue to be computed. I = 1 or I = 2.
31
32 D (input) REAL array, dimension (2)
33 The original eigenvalues. We assume 0 <= D(1) < D(2).
34
35 Z (input) REAL array, dimension (2)
36 The components of the updating vector.
37
38 DELTA (output) REAL array, dimension (2)
39 Contains (D(j) - sigma_I) in its j-th component. The vector
40 DELTA contains the information necessary to construct the eigen‐
41 vectors.
42
43 RHO (input) REAL
44 The scalar in the symmetric updating formula.
45
46 DSIGMA (output) REAL The computed sigma_I, the I-th updated ei‐
47 genvalue.
48
49 WORK (workspace) REAL array, dimension (2)
50 WORK contains (D(j) + sigma_I) in its j-th component.
51
53 Based on contributions by
54 Ren-Cang Li, Computer Science Division, University of California
55 at Berkeley, USA
56
57
58
59
60 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 SLASD5(1)