1ZGTRFS(1)                LAPACK routine (version 3.2)                ZGTRFS(1)
2
3
4

NAME

6       ZGTRFS - improves the computed solution to a system of linear equations
7       when the coefficient matrix is tridiagonal, and provides  error  bounds
8       and backward error estimates for the solution
9

SYNOPSIS

11       SUBROUTINE ZGTRFS( TRANS,  N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
12                          B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
13
14           CHARACTER      TRANS
15
16           INTEGER        INFO, LDB, LDX, N, NRHS
17
18           INTEGER        IPIV( * )
19
20           DOUBLE         PRECISION BERR( * ), FERR( * ), RWORK( * )
21
22           COMPLEX*16     B( LDB, * ), D( * ), DF( * ), DL( * ), DLF( * ), DU(
23                          * ), DU2( * ), DUF( * ), WORK( * ), X( LDX, * )
24

PURPOSE

26       ZGTRFS  improves  the computed solution to a system of linear equations
27       when the coefficient matrix is tridiagonal, and provides  error  bounds
28       and backward error estimates for the solution.
29

ARGUMENTS

31       TRANS   (input) CHARACTER*1
32               Specifies the form of the system of equations:
33               = 'N':  A * X = B     (No transpose)
34               = 'T':  A**T * X = B  (Transpose)
35               = 'C':  A**H * X = B  (Conjugate transpose)
36
37       N       (input) INTEGER
38               The order of the matrix A.  N >= 0.
39
40       NRHS    (input) INTEGER
41               The  number of right hand sides, i.e., the number of columns of
42               the matrix B.  NRHS >= 0.
43
44       DL      (input) COMPLEX*16 array, dimension (N-1)
45               The (n-1) subdiagonal elements of A.
46
47       D       (input) COMPLEX*16 array, dimension (N)
48               The diagonal elements of A.
49
50       DU      (input) COMPLEX*16 array, dimension (N-1)
51               The (n-1) superdiagonal elements of A.
52
53       DLF     (input) COMPLEX*16 array, dimension (N-1)
54               The (n-1) multipliers that define the matrix L from the LU fac‐
55               torization of A as computed by ZGTTRF.
56
57       DF      (input) COMPLEX*16 array, dimension (N)
58               The  n  diagonal elements of the upper triangular matrix U from
59               the LU factorization of A.
60
61       DUF     (input) COMPLEX*16 array, dimension (N-1)
62               The (n-1) elements of the first superdiagonal of U.
63
64       DU2     (input) COMPLEX*16 array, dimension (N-2)
65               The (n-2) elements of the second superdiagonal of U.
66
67       IPIV    (input) INTEGER array, dimension (N)
68               The pivot indices; for 1 <= i <= n, row i  of  the  matrix  was
69               interchanged with row IPIV(i).  IPIV(i) will always be either i
70               or i+1; IPIV(i)  =  i  indicates  a  row  interchange  was  not
71               required.
72
73       B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
74               The right hand side matrix B.
75
76       LDB     (input) INTEGER
77               The leading dimension of the array B.  LDB >= max(1,N).
78
79       X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
80               On  entry,  the  solution  matrix X, as computed by ZGTTRS.  On
81               exit, the improved solution matrix X.
82
83       LDX     (input) INTEGER
84               The leading dimension of the array X.  LDX >= max(1,N).
85
86       FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
87               The estimated forward error bound for each solution vector X(j)
88               (the  j-th  column  of the solution matrix X).  If XTRUE is the
89               true solution corresponding to X(j), FERR(j)  is  an  estimated
90               upper bound for the magnitude of the largest element in (X(j) -
91               XTRUE) divided by the magnitude of the largest element in X(j).
92               The  estimate  is as reliable as the estimate for RCOND, and is
93               almost always a slight overestimate of the true error.
94
95       BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
96               The componentwise relative backward error of each solution vec‐
97               tor  X(j) (i.e., the smallest relative change in any element of
98               A or B that makes X(j) an exact solution).
99
100       WORK    (workspace) COMPLEX*16 array, dimension (2*N)
101
102       RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
103
104       INFO    (output) INTEGER
105               = 0:  successful exit
106               < 0:  if INFO = -i, the i-th argument had an illegal value
107

PARAMETERS

109       ITMAX is the maximum number of steps of iterative refinement.
110
111
112
113 LAPACK routine (version 3.2)    November 2008                       ZGTRFS(1)
Impressum