1ZGTRFS(1)                LAPACK routine (version 3.1)                ZGTRFS(1)
2
3
4

NAME

6       ZGTRFS - the computed solution to a system of linear equations when the
7       coefficient matrix is tridiagonal, and provides error bounds and  back‐
8       ward error estimates for the solution
9

SYNOPSIS

11       SUBROUTINE ZGTRFS( TRANS,  N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, IPIV,
12                          B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
13
14           CHARACTER      TRANS
15
16           INTEGER        INFO, LDB, LDX, N, NRHS
17
18           INTEGER        IPIV( * )
19
20           DOUBLE         PRECISION BERR( * ), FERR( * ), RWORK( * )
21
22           COMPLEX*16     B( LDB, * ), D( * ), DF( * ), DL( * ), DLF( * ), DU(
23                          * ), DU2( * ), DUF( * ), WORK( * ), X( LDX, * )
24

PURPOSE

26       ZGTRFS  improves  the computed solution to a system of linear equations
27       when the coefficient matrix is tridiagonal, and provides  error  bounds
28       and backward error estimates for the solution.
29
30

ARGUMENTS

32       TRANS   (input) CHARACTER*1
33               Specifies the form of the system of equations:
34               = 'N':  A * X = B     (No transpose)
35               = 'T':  A**T * X = B  (Transpose)
36               = 'C':  A**H * X = B  (Conjugate transpose)
37
38       N       (input) INTEGER
39               The order of the matrix A.  N >= 0.
40
41       NRHS    (input) INTEGER
42               The  number of right hand sides, i.e., the number of columns of
43               the matrix B.  NRHS >= 0.
44
45       DL      (input) COMPLEX*16 array, dimension (N-1)
46               The (n-1) subdiagonal elements of A.
47
48       D       (input) COMPLEX*16 array, dimension (N)
49               The diagonal elements of A.
50
51       DU      (input) COMPLEX*16 array, dimension (N-1)
52               The (n-1) superdiagonal elements of A.
53
54       DLF     (input) COMPLEX*16 array, dimension (N-1)
55               The (n-1) multipliers that define the matrix L from the LU fac‐
56               torization of A as computed by ZGTTRF.
57
58       DF      (input) COMPLEX*16 array, dimension (N)
59               The  n  diagonal elements of the upper triangular matrix U from
60               the LU factorization of A.
61
62       DUF     (input) COMPLEX*16 array, dimension (N-1)
63               The (n-1) elements of the first superdiagonal of U.
64
65       DU2     (input) COMPLEX*16 array, dimension (N-2)
66               The (n-2) elements of the second superdiagonal of U.
67
68       IPIV    (input) INTEGER array, dimension (N)
69               The pivot indices; for 1 <= i <= n, row i  of  the  matrix  was
70               interchanged with row IPIV(i).  IPIV(i) will always be either i
71               or i+1; IPIV(i)  =  i  indicates  a  row  interchange  was  not
72               required.
73
74       B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
75               The right hand side matrix B.
76
77       LDB     (input) INTEGER
78               The leading dimension of the array B.  LDB >= max(1,N).
79
80       X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
81               On  entry,  the  solution  matrix X, as computed by ZGTTRS.  On
82               exit, the improved solution matrix X.
83
84       LDX     (input) INTEGER
85               The leading dimension of the array X.  LDX >= max(1,N).
86
87       FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
88               The estimated forward error bound for each solution vector X(j)
89               (the  j-th  column  of the solution matrix X).  If XTRUE is the
90               true solution corresponding to X(j), FERR(j)  is  an  estimated
91               upper bound for the magnitude of the largest element in (X(j) -
92               XTRUE) divided by the magnitude of the largest element in X(j).
93               The  estimate  is as reliable as the estimate for RCOND, and is
94               almost always a slight overestimate of the true error.
95
96       BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
97               The componentwise relative backward error of each solution vec‐
98               tor  X(j) (i.e., the smallest relative change in any element of
99               A or B that makes X(j) an exact solution).
100
101       WORK    (workspace) COMPLEX*16 array, dimension (2*N)
102
103       RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
104
105       INFO    (output) INTEGER
106               = 0:  successful exit
107               < 0:  if INFO = -i, the i-th argument had an illegal value
108

PARAMETERS

110       ITMAX is the maximum number of steps of iterative refinement.
111
112
113
114 LAPACK routine (version 3.1)    November 2006                       ZGTRFS(1)
Impressum