1ZLAQP2(1) LAPACK auxiliary routine (version 3.2) ZLAQP2(1)
2
3
4
6 ZLAQP2 - computes a QR factorization with column pivoting of the block
7 A(OFFSET+1:M,1:N)
8
10 SUBROUTINE ZLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2, WORK )
11
12 INTEGER LDA, M, N, OFFSET
13
14 INTEGER JPVT( * )
15
16 DOUBLE PRECISION VN1( * ), VN2( * )
17
18 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
19
21 ZLAQP2 computes a QR factorization with column pivoting of the block
22 A(OFFSET+1:M,1:N). The block A(1:OFFSET,1:N) is accordingly pivoted,
23 but not factorized.
24
26 M (input) INTEGER
27 The number of rows of the matrix A. M >= 0.
28
29 N (input) INTEGER
30 The number of columns of the matrix A. N >= 0.
31
32 OFFSET (input) INTEGER
33 The number of rows of the matrix A that must be pivoted but no
34 factorized. OFFSET >= 0.
35
36 A (input/output) COMPLEX*16 array, dimension (LDA,N)
37 On entry, the M-by-N matrix A. On exit, the upper triangle of
38 block A(OFFSET+1:M,1:N) is the triangular factor obtained; the
39 elements in block A(OFFSET+1:M,1:N) below the diagonal,
40 together with the array TAU, represent the orthogonal matrix Q
41 as a product of elementary reflectors. Block A(1:OFFSET,1:N)
42 has been accordingly pivoted, but no factorized.
43
44 LDA (input) INTEGER
45 The leading dimension of the array A. LDA >= max(1,M).
46
47 JPVT (input/output) INTEGER array, dimension (N)
48 On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
49 to the front of A*P (a leading column); if JPVT(i) = 0, the i-
50 th column of A is a free column. On exit, if JPVT(i) = k, then
51 the i-th column of A*P was the k-th column of A.
52
53 TAU (output) COMPLEX*16 array, dimension (min(M,N))
54 The scalar factors of the elementary reflectors.
55
56 VN1 (input/output) DOUBLE PRECISION array, dimension (N)
57 The vector with the partial column norms.
58
59 VN2 (input/output) DOUBLE PRECISION array, dimension (N)
60 The vector with the exact column norms.
61
62 WORK (workspace) COMPLEX*16 array, dimension (N)
63
65 Based on contributions by
66 G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
67 X. Sun, Computer Science Dept., Duke University, USA
68 Partial column norm updating strategy modified by
69 Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
70 University of Zagreb, Croatia.
71 June 2006.
72 For more details see LAPACK Working Note 176.
73
74
75
76 LAPACK auxiliary routine (versionNo3v.e2m)ber 2008 ZLAQP2(1)