1ZLAQP2(1) LAPACK auxiliary routine (version 3.1) ZLAQP2(1)
2
3
4
6 ZLAQP2 - a QR factorization with column pivoting of the block A(OFF‐
7 SET+1:M,1:N)
8
10 SUBROUTINE ZLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2, WORK )
11
12 INTEGER LDA, M, N, OFFSET
13
14 INTEGER JPVT( * )
15
16 DOUBLE PRECISION VN1( * ), VN2( * )
17
18 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
19
21 ZLAQP2 computes a QR factorization with column pivoting of the block
22 A(OFFSET+1:M,1:N). The block A(1:OFFSET,1:N) is accordingly pivoted,
23 but not factorized.
24
25
27 M (input) INTEGER
28 The number of rows of the matrix A. M >= 0.
29
30 N (input) INTEGER
31 The number of columns of the matrix A. N >= 0.
32
33 OFFSET (input) INTEGER
34 The number of rows of the matrix A that must be pivoted but no
35 factorized. OFFSET >= 0.
36
37 A (input/output) COMPLEX*16 array, dimension (LDA,N)
38 On entry, the M-by-N matrix A. On exit, the upper triangle of
39 block A(OFFSET+1:M,1:N) is the triangular factor obtained; the
40 elements in block A(OFFSET+1:M,1:N) below the diagonal,
41 together with the array TAU, represent the orthogonal matrix Q
42 as a product of elementary reflectors. Block A(1:OFFSET,1:N)
43 has been accordingly pivoted, but no factorized.
44
45 LDA (input) INTEGER
46 The leading dimension of the array A. LDA >= max(1,M).
47
48 JPVT (input/output) INTEGER array, dimension (N)
49 On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
50 to the front of A*P (a leading column); if JPVT(i) = 0, the i-
51 th column of A is a free column. On exit, if JPVT(i) = k, then
52 the i-th column of A*P was the k-th column of A.
53
54 TAU (output) COMPLEX*16 array, dimension (min(M,N))
55 The scalar factors of the elementary reflectors.
56
57 VN1 (input/output) DOUBLE PRECISION array, dimension (N)
58 The vector with the partial column norms.
59
60 VN2 (input/output) DOUBLE PRECISION array, dimension (N)
61 The vector with the exact column norms.
62
63 WORK (workspace) COMPLEX*16 array, dimension (N)
64
66 Based on contributions by
67 G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
68 X. Sun, Computer Science Dept., Duke University, USA
69
70 Partial column norm updating strategy modified by
71 Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
72 University of Zagreb, Croatia.
73 June 2006.
74 For more details see LAPACK Working Note 176.
75
76
77
78 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 ZLAQP2(1)