1ZPTRFS(1)                LAPACK routine (version 3.2)                ZPTRFS(1)
2
3
4

NAME

6       ZPTRFS - improves the computed solution to a system of linear equations
7       when the coefficient matrix is Hermitian positive definite and tridiag‐
8       onal,  and  provides  error bounds and backward error estimates for the
9       solution
10

SYNOPSIS

12       SUBROUTINE ZPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X,  LDX,  FERR,
13                          BERR, WORK, RWORK, INFO )
14
15           CHARACTER      UPLO
16
17           INTEGER        INFO, LDB, LDX, N, NRHS
18
19           DOUBLE         PRECISION  BERR(  *  ),  D( * ), DF( * ), FERR( * ),
20                          RWORK( * )
21
22           COMPLEX*16     B( LDB, * ), E( * ), EF( * ), WORK( * ), X( LDX, * )
23

PURPOSE

25       ZPTRFS improves the computed solution to a system of  linear  equations
26       when the coefficient matrix is Hermitian positive definite and tridiag‐
27       onal, and provides error bounds and backward error  estimates  for  the
28       solution.
29

ARGUMENTS

31       UPLO    (input) CHARACTER*1
32               Specifies  whether  the superdiagonal or the subdiagonal of the
33               tridiagonal matrix A is stored and the form of  the  factoriza‐
34               tion:
35               = 'U':  E is the superdiagonal of A, and A = U**H*D*U;
36               =  'L':  E is the subdiagonal of A, and A = L*D*L**H.  (The two
37               forms are equivalent if A is real.)
38
39       N       (input) INTEGER
40               The order of the matrix A.  N >= 0.
41
42       NRHS    (input) INTEGER
43               The number of right hand sides, i.e., the number of columns  of
44               the matrix B.  NRHS >= 0.
45
46       D       (input) DOUBLE PRECISION array, dimension (N)
47               The n real diagonal elements of the tridiagonal matrix A.
48
49       E       (input) COMPLEX*16 array, dimension (N-1)
50               The  (n-1)  off-diagonal  elements  of the tridiagonal matrix A
51               (see UPLO).
52
53       DF      (input) DOUBLE PRECISION array, dimension (N)
54               The n diagonal elements of the diagonal matrix D from the  fac‐
55               torization computed by ZPTTRF.
56
57       EF      (input) COMPLEX*16 array, dimension (N-1)
58               The (n-1) off-diagonal elements of the unit bidiagonal factor U
59               or L from the factorization computed by ZPTTRF (see UPLO).
60
61       B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
62               The right hand side matrix B.
63
64       LDB     (input) INTEGER
65               The leading dimension of the array B.  LDB >= max(1,N).
66
67       X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
68               On entry, the solution matrix X, as  computed  by  ZPTTRS.   On
69               exit, the improved solution matrix X.
70
71       LDX     (input) INTEGER
72               The leading dimension of the array X.  LDX >= max(1,N).
73
74       FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
75               The forward error bound for each solution vector X(j) (the j-th
76               column of the solution matrix X).  If XTRUE is the  true  solu‐
77               tion corresponding to X(j), FERR(j) is an estimated upper bound
78               for the magnitude of the largest  element  in  (X(j)  -  XTRUE)
79               divided by the magnitude of the largest element in X(j).
80
81       BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
82               The componentwise relative backward error of each solution vec‐
83               tor X(j) (i.e., the smallest relative change in any element  of
84               A or B that makes X(j) an exact solution).
85
86       WORK    (workspace) COMPLEX*16 array, dimension (N)
87
88       RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
89
90       INFO    (output) INTEGER
91               = 0:  successful exit
92               < 0:  if INFO = -i, the i-th argument had an illegal value
93

PARAMETERS

95       ITMAX is the maximum number of steps of iterative refinement.
96
97
98
99 LAPACK routine (version 3.2)    November 2008                       ZPTRFS(1)
Impressum