1ZPTRFS(1)                LAPACK routine (version 3.1)                ZPTRFS(1)
2
3
4

NAME

6       ZPTRFS - the computed solution to a system of linear equations when the
7       coefficient matrix is Hermitian positive definite and tridiagonal,  and
8       provides error bounds and backward error estimates for the solution
9

SYNOPSIS

11       SUBROUTINE ZPTRFS( UPLO,  N,  NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR,
12                          BERR, WORK, RWORK, INFO )
13
14           CHARACTER      UPLO
15
16           INTEGER        INFO, LDB, LDX, N, NRHS
17
18           DOUBLE         PRECISION BERR( * ), D( * ), DF( *  ),  FERR(  *  ),
19                          RWORK( * )
20
21           COMPLEX*16     B( LDB, * ), E( * ), EF( * ), WORK( * ), X( LDX, * )
22

PURPOSE

24       ZPTRFS  improves  the computed solution to a system of linear equations
25       when the coefficient matrix is Hermitian positive definite and tridiag‐
26       onal,  and  provides  error bounds and backward error estimates for the
27       solution.
28
29

ARGUMENTS

31       UPLO    (input) CHARACTER*1
32               Specifies whether the superdiagonal or the subdiagonal  of  the
33               tridiagonal  matrix  A is stored and the form of the factoriza‐
34               tion:
35               = 'U':  E is the superdiagonal of A, and A = U**H*D*U;
36               = 'L':  E is the subdiagonal of A, and A = L*D*L**H.  (The  two
37               forms are equivalent if A is real.)
38
39       N       (input) INTEGER
40               The order of the matrix A.  N >= 0.
41
42       NRHS    (input) INTEGER
43               The  number of right hand sides, i.e., the number of columns of
44               the matrix B.  NRHS >= 0.
45
46       D       (input) DOUBLE PRECISION array, dimension (N)
47               The n real diagonal elements of the tridiagonal matrix A.
48
49       E       (input) COMPLEX*16 array, dimension (N-1)
50               The (n-1) off-diagonal elements of  the  tridiagonal  matrix  A
51               (see UPLO).
52
53       DF      (input) DOUBLE PRECISION array, dimension (N)
54               The  n diagonal elements of the diagonal matrix D from the fac‐
55               torization computed by ZPTTRF.
56
57       EF      (input) COMPLEX*16 array, dimension (N-1)
58               The (n-1) off-diagonal elements of the unit bidiagonal factor U
59               or L from the factorization computed by ZPTTRF (see UPLO).
60
61       B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
62               The right hand side matrix B.
63
64       LDB     (input) INTEGER
65               The leading dimension of the array B.  LDB >= max(1,N).
66
67       X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
68               On  entry,  the  solution  matrix X, as computed by ZPTTRS.  On
69               exit, the improved solution matrix X.
70
71       LDX     (input) INTEGER
72               The leading dimension of the array X.  LDX >= max(1,N).
73
74       FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
75               The forward error bound for each solution vector X(j) (the j-th
76               column  of  the solution matrix X).  If XTRUE is the true solu‐
77               tion corresponding to X(j), FERR(j) is an estimated upper bound
78               for  the  magnitude  of  the  largest element in (X(j) - XTRUE)
79               divided by the magnitude of the largest element in X(j).
80
81       BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
82               The componentwise relative backward error of each solution vec‐
83               tor  X(j) (i.e., the smallest relative change in any element of
84               A or B that makes X(j) an exact solution).
85
86       WORK    (workspace) COMPLEX*16 array, dimension (N)
87
88       RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
89
90       INFO    (output) INTEGER
91               = 0:  successful exit
92               < 0:  if INFO = -i, the i-th argument had an illegal value
93

PARAMETERS

95       ITMAX is the maximum number of steps of iterative refinement.
96
97
98
99 LAPACK routine (version 3.1)    November 2006                       ZPTRFS(1)
Impressum