1ZUNMBR(1)                LAPACK routine (version 3.2)                ZUNMBR(1)
2
3
4

NAME

6       ZUNMBR  -  VECT  =  'Q',  ZUNMBR  overwrites the general complex M-by-N
7       matrix C with  SIDE = 'L' SIDE = 'R' TRANS = 'N'
8

SYNOPSIS

10       SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A,  LDA,  TAU,  C,  LDC,
11                          WORK, LWORK, INFO )
12
13           CHARACTER      SIDE, TRANS, VECT
14
15           INTEGER        INFO, K, LDA, LDC, LWORK, M, N
16
17           COMPLEX*16     A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
18

PURPOSE

20       If  VECT  =  'Q', ZUNMBR overwrites the general complex M-by-N matrix C
21       with
22                       SIDE = 'L'     SIDE = 'R'  TRANS  =  'N':       Q  *  C
23       C * Q TRANS = 'C':      Q**H * C       C * Q**H
24       If  VECT  =  'P', ZUNMBR overwrites the general complex M-by-N matrix C
25       with
26                       SIDE = 'L'     SIDE = 'R'
27       TRANS = 'N':      P * C          C * P
28       TRANS = 'C':      P**H * C       C * P**H
29       Here Q and P**H are the unitary  matrices  determined  by  ZGEBRD  when
30       reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q and
31       P**H are defined as products of elementary  reflectors  H(i)  and  G(i)
32       respectively.
33       Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order
34       of the unitary matrix Q or P**H that is applied.
35       If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: if nq >= k,
36       Q = H(1) H(2) . . . H(k);
37       if nq < k, Q = H(1) H(2) . . . H(nq-1).
38       If VECT = 'P', A is assumed to have been a K-by-NQ matrix: if k < nq, P
39       = G(1) G(2) . . . G(k);
40       if k >= nq, P = G(1) G(2) . . . G(nq-1).
41

ARGUMENTS

43       VECT    (input) CHARACTER*1
44               = 'Q': apply Q or Q**H;
45               = 'P': apply P or P**H.
46
47       SIDE    (input) CHARACTER*1
48               = 'L': apply Q, Q**H, P or P**H from the Left;
49               = 'R': apply Q, Q**H, P or P**H from the Right.
50
51       TRANS   (input) CHARACTER*1
52               = 'N':  No transpose, apply Q or P;
53               = 'C':  Conjugate transpose, apply Q**H or P**H.
54
55       M       (input) INTEGER
56               The number of rows of the matrix C. M >= 0.
57
58       N       (input) INTEGER
59               The number of columns of the matrix C. N >= 0.
60
61       K       (input) INTEGER
62               If VECT = 'Q', the number of columns  in  the  original  matrix
63               reduced  by  ZGEBRD.   If VECT = 'P', the number of rows in the
64               original matrix reduced by ZGEBRD.  K >= 0.
65
66       A       (input) COMPLEX*16 array, dimension
67               (LDA,min(nq,K)) if VECT = 'Q' (LDA,nq)        if VECT = 'P' The
68               vectors  which  define the elementary reflectors H(i) and G(i),
69               whose products determine the matrices Q and P, as  returned  by
70               ZGEBRD.
71
72       LDA     (input) INTEGER
73               The  leading  dimension  of the array A.  If VECT = 'Q', LDA >=
74               max(1,nq); if VECT = 'P', LDA >= max(1,min(nq,K)).
75
76       TAU     (input) COMPLEX*16 array, dimension (min(nq,K))
77               TAU(i) must contain the scalar factor of the elementary reflec‐
78               tor H(i) or G(i) which determines Q or P, as returned by ZGEBRD
79               in the array argument TAUQ or TAUP.
80
81       C       (input/output) COMPLEX*16 array, dimension (LDC,N)
82               On entry, the M-by-N matrix C.  On exit, C  is  overwritten  by
83               Q*C  or  Q**H*C  or  C*Q**H  or  C*Q or P*C or P**H*C or C*P or
84               C*P**H.
85
86       LDC     (input) INTEGER
87               The leading dimension of the array C. LDC >= max(1,M).
88
89       WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
90               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
91
92       LWORK   (input) INTEGER
93               The dimension of the array WORK.   If  SIDE  =  'L',  LWORK  >=
94               max(1,N);  if SIDE = 'R', LWORK >= max(1,M); if N = 0 or M = 0,
95               LWORK >= 1.  For optimum performance LWORK  >=  max(1,N*NB)  if
96               SIDE = 'L', and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is
97               the optimal blocksize. (NB = 0 if M = 0 or N = 0.)  If LWORK  =
98               -1,  then a workspace query is assumed; the routine only calcu‐
99               lates the optimal size of the WORK array, returns this value as
100               the first entry of the WORK array, and no error message related
101               to LWORK is issued by XERBLA.
102
103       INFO    (output) INTEGER
104               = 0:  successful exit
105               < 0:  if INFO = -i, the i-th argument had an illegal value
106
107
108
109 LAPACK routine (version 3.2)    November 2008                       ZUNMBR(1)
Impressum