1ZUNMBR(1)                LAPACK routine (version 3.1)                ZUNMBR(1)
2
3
4

NAME

6       ZUNMBR  -  = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C
7       with  SIDE = 'L' SIDE = 'R' TRANS = 'N'
8

SYNOPSIS

10       SUBROUTINE ZUNMBR( VECT, SIDE, TRANS, M, N, K, A,  LDA,  TAU,  C,  LDC,
11                          WORK, LWORK, INFO )
12
13           CHARACTER      SIDE, TRANS, VECT
14
15           INTEGER        INFO, K, LDA, LDC, LWORK, M, N
16
17           COMPLEX*16     A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
18

PURPOSE

20       If  VECT  =  'Q', ZUNMBR overwrites the general complex M-by-N matrix C
21       with
22                       SIDE = 'L'     SIDE = 'R'  TRANS  =  'N':       Q  *  C
23       C * Q TRANS = 'C':      Q**H * C       C * Q**H
24
25       If  VECT  =  'P', ZUNMBR overwrites the general complex M-by-N matrix C
26       with
27                       SIDE = 'L'     SIDE = 'R'
28       TRANS = 'N':      P * C          C * P
29       TRANS = 'C':      P**H * C       C * P**H
30
31       Here Q and P**H are the unitary  matrices  determined  by  ZGEBRD  when
32       reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q and
33       P**H are defined as products of elementary  reflectors  H(i)  and  G(i)
34       respectively.
35
36       Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order
37       of the unitary matrix Q or P**H that is applied.
38
39       If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: if nq >= k,
40       Q = H(1) H(2) . . . H(k);
41       if nq < k, Q = H(1) H(2) . . . H(nq-1).
42
43       If VECT = 'P', A is assumed to have been a K-by-NQ matrix: if k < nq, P
44       = G(1) G(2) . . . G(k);
45       if k >= nq, P = G(1) G(2) . . . G(nq-1).
46
47

ARGUMENTS

49       VECT    (input) CHARACTER*1
50               = 'Q': apply Q or Q**H;
51               = 'P': apply P or P**H.
52
53       SIDE    (input) CHARACTER*1
54               = 'L': apply Q, Q**H, P or P**H from the Left;
55               = 'R': apply Q, Q**H, P or P**H from the Right.
56
57       TRANS   (input) CHARACTER*1
58               = 'N':  No transpose, apply Q or P;
59               = 'C':  Conjugate transpose, apply Q**H or P**H.
60
61       M       (input) INTEGER
62               The number of rows of the matrix C. M >= 0.
63
64       N       (input) INTEGER
65               The number of columns of the matrix C. N >= 0.
66
67       K       (input) INTEGER
68               If VECT = 'Q', the number of columns  in  the  original  matrix
69               reduced  by  ZGEBRD.   If VECT = 'P', the number of rows in the
70               original matrix reduced by ZGEBRD.  K >= 0.
71
72       A       (input) COMPLEX*16 array, dimension
73               (LDA,min(nq,K)) if VECT = 'Q' (LDA,nq)        if VECT = 'P' The
74               vectors  which  define the elementary reflectors H(i) and G(i),
75               whose products determine the matrices Q and P, as  returned  by
76               ZGEBRD.
77
78       LDA     (input) INTEGER
79               The  leading  dimension  of the array A.  If VECT = 'Q', LDA >=
80               max(1,nq); if VECT = 'P', LDA >= max(1,min(nq,K)).
81
82       TAU     (input) COMPLEX*16 array, dimension (min(nq,K))
83               TAU(i) must contain the scalar factor of the elementary reflecā€
84               tor H(i) or G(i) which determines Q or P, as returned by ZGEBRD
85               in the array argument TAUQ or TAUP.
86
87       C       (input/output) COMPLEX*16 array, dimension (LDC,N)
88               On entry, the M-by-N matrix C.  On exit, C  is  overwritten  by
89               Q*C  or  Q**H*C  or  C*Q**H  or  C*Q or P*C or P**H*C or C*P or
90               C*P**H.
91
92       LDC     (input) INTEGER
93               The leading dimension of the array C. LDC >= max(1,M).
94
95       WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
96               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
97
98       LWORK   (input) INTEGER
99               The dimension of the array WORK.   If  SIDE  =  'L',  LWORK  >=
100               max(1,N);  if SIDE = 'R', LWORK >= max(1,M); if N = 0 or M = 0,
101               LWORK >= 1.  For optimum performance LWORK  >=  max(1,N*NB)  if
102               SIDE = 'L', and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is
103               the optimal blocksize. (NB = 0 if M = 0 or N = 0.)
104
105               If LWORK = -1, then a workspace query is assumed;  the  routine
106               only  calculates  the  optimal  size of the WORK array, returns
107               this value as the first entry of the WORK array, and  no  error
108               message related to LWORK is issued by XERBLA.
109
110       INFO    (output) INTEGER
111               = 0:  successful exit
112               < 0:  if INFO = -i, the i-th argument had an illegal value
113
114
115
116 LAPACK routine (version 3.1)    November 2006                       ZUNMBR(1)
Impressum