1Complex(3)            User Contributed Perl Documentation           Complex(3)
2
3
4

NAME

6       PDL::Complex - handle complex numbers
7

SYNOPSIS

9         use PDL;
10         use PDL::Complex;
11

DESCRIPTION

13       This module features a growing number of functions manipulating complex
14       numbers. These are usually represented as a pair "[ real imag ]" or "[
15       angle phase ]". If not explicitly mentioned, the functions can work
16       inplace (not yet implemented!!!) and require rectangular form.
17
18       While there is a procedural interface available ("$a/$b*$c <=" Cmul
19       (Cdiv $a, $b), $c)>), you can also opt to cast your pdl's into the
20       "PDL::Complex" datatype, which works just like your normal piddles, but
21       with all the normal perl operators overloaded.
22
23       The latter means that "sin($a) + $b/$c" will be evaluated using the
24       normal rules of complex numbers, while other pdl functions (like "max")
25       just treat the piddle as a real-valued piddle with a lowest dimension
26       of size 2, so "max" will return the maximum of all real and imaginary
27       parts, not the "highest" (for some definition)
28

TIPS, TRICKS & CAVEATS

30       ·   "i" is a constant exported by this module, which represents
31           "-1**0.5", i.e. the imaginary unit. it can be used to quickly and
32           conviniently write complex constants like this: "4+3*i".
33
34       ·   Use "r2C(real-values)" to convert from real to complex, as in "$r =
35           Cpow $cplx, r2C 2". The overloaded operators automatically do that
36           for you, all the other functions, do not. So "Croots 1, 5" will
37           return all the fifths roots of 1+1*i (due to threading).
38
39       ·   use "cplx(real-valued-piddle)" to cast from normal piddles intot he
40           complex datatype. Use "real(complex-valued-piddle)" to cast back.
41           This requires a copy, though.
42
43       ·   This module has received some testing by Vanuxem GrA~Xgory
44           (g.vanuxem at wanadoo dot fr). Please report any other errors you
45           come across!
46

EXAMPLE WALK-THROUGH

48       The complex constant five is equal to "pdl(1,0)":
49
50          perldl> p $x = r2C 5
51          [5 0]
52
53       Now calculate the three roots of of five:
54
55          perldl> p $r = Croots $x, 3
56
57          [
58           [  1.7099759           0]
59           [-0.85498797   1.4808826]
60           [-0.85498797  -1.4808826]
61          ]
62
63       Check that these really are the roots of unity:
64
65          perldl> p $r ** 3
66
67          [
68           [             5              0]
69           [             5 -3.4450524e-15]
70           [             5 -9.8776239e-15]
71          ]
72
73       Duh! Could be better. Now try by multiplying $r three times with
74       itself:
75
76          perldl> p $r*$r*$r
77
78          [
79           [             5              0]
80           [             5 -2.8052647e-15]
81           [             5 -7.5369398e-15]
82          ]
83
84       Well... maybe "Cpow" (which is used by the "**" operator) isn't as bad
85       as I thought. Now multiply by "i" and negate, which is just a very
86       expensive way of swapping real and imaginary parts.
87
88          perldl> p -($r*i)
89
90          [
91           [         -0   1.7099759]
92           [  1.4808826 -0.85498797]
93           [ -1.4808826 -0.85498797]
94          ]
95
96       Now plot the magnitude of (part of) the complex sine. First generate
97       the coefficients:
98
99          perldl> $sin = i * zeroes(50)->xlinvals(2,4)
100                           + zeroes(50)->xlinvals(0,7)
101
102       Now plot the imaginary part, the real part and the magnitude of the
103       sine into the same diagram:
104
105          perldl> line im sin $sin; hold
106          perldl> line re sin $sin
107          perldl> line abs sin $sin
108
109       Sorry, but I didn't yet try to reproduce the diagram in this text. Just
110       run the commands yourself, making sure that you have loaded
111       "PDL::Complex" (and "PDL::Graphics::PGPLOT").
112

FUNCTIONS

114   cplx real-valued-pdl
115       Cast a real-valued piddle to the complex datatype. The first dimension
116       of the piddle must be of size 2. After this the usual (complex)
117       arithmetic operators are applied to this pdl, rather than the normal
118       elementwise pdl operators.  Dataflow to the complex parent works. Use
119       "sever" on the result if you don't want this.
120
121   complex real-valued-pdl
122       Cast a real-valued piddle to the complex datatype without dataflow and
123       inplace. Achieved by merely reblessing a piddle. The first dimension of
124       the piddle must be of size 2.
125
126   real cplx-valued-pdl
127       Cast a complex valued pdl back to the "normal" pdl datatype. Afterwards
128       the normal elementwise pdl operators are used in operations. Dataflow
129       to the real parent works. Use "sever" on the result if you don't want
130       this.
131
132   r2C
133         Signature: (r(); [o]c(m=2))
134
135       convert real to complex, assuming an imaginary part of zero
136
137       r2C does not process bad values.  It will set the bad-value flag of all
138       output piddles if the flag is set for any of the input piddles.
139
140   i2C
141         Signature: (r(); [o]c(m=2))
142
143       convert imaginary to complex, assuming a real part of zero
144
145       i2C does not process bad values.  It will set the bad-value flag of all
146       output piddles if the flag is set for any of the input piddles.
147
148   Cr2p
149         Signature: (r(m=2); float+ [o]p(m=2))
150
151       convert complex numbers in rectangular form to polar (mod,arg) form
152
153       Cr2p does not process bad values.  It will set the bad-value flag of
154       all output piddles if the flag is set for any of the input piddles.
155
156   Cp2r
157         Signature: (r(m=2); [o]p(m=2))
158
159       convert complex numbers in polar (mod,arg) form to rectangular form
160
161       Cp2r does not process bad values.  It will set the bad-value flag of
162       all output piddles if the flag is set for any of the input piddles.
163
164   Cmul
165         Signature: (a(m=2); b(m=2); [o]c(m=2))
166
167       complex multiplication
168
169       Cmul does not process bad values.  It will set the bad-value flag of
170       all output piddles if the flag is set for any of the input piddles.
171
172   Cprodover
173         Signature: (a(m=2,n); [o]c(m=2))
174
175       Project via product to N-1 dimension
176
177       Cprodover does not process bad values.  It will set the bad-value flag
178       of all output piddles if the flag is set for any of the input piddles.
179
180   Cscale
181         Signature: (a(m=2); b(); [o]c(m=2))
182
183       mixed complex/real multiplication
184
185       Cscale does not process bad values.  It will set the bad-value flag of
186       all output piddles if the flag is set for any of the input piddles.
187
188   Cdiv
189         Signature: (a(m=2); b(m=2); [o]c(m=2))
190
191       complex division
192
193       Cdiv does not process bad values.  It will set the bad-value flag of
194       all output piddles if the flag is set for any of the input piddles.
195
196   Ccmp
197         Signature: (a(m=2); b(m=2); [o]c())
198
199       Complex comparison oeprator (spaceship). It orders by real first, then
200       by imaginary. Hm, but it is mathematical nonsense! Complex numbers
201       cannot be ordered.
202
203       Ccmp does not process bad values.  It will set the bad-value flag of
204       all output piddles if the flag is set for any of the input piddles.
205
206   Cconj
207         Signature: (a(m=2); [o]c(m=2))
208
209       complex conjugation
210
211       Cconj does not process bad values.  It will set the bad-value flag of
212       all output piddles if the flag is set for any of the input piddles.
213
214   Cabs
215         Signature: (a(m=2); [o]c())
216
217       complex "abs()" (also known as modulus)
218
219       Cabs does not process bad values.  It will set the bad-value flag of
220       all output piddles if the flag is set for any of the input piddles.
221
222   Cabs2
223         Signature: (a(m=2); [o]c())
224
225       complex squared "abs()" (also known squared modulus)
226
227       Cabs2 does not process bad values.  It will set the bad-value flag of
228       all output piddles if the flag is set for any of the input piddles.
229
230   Carg
231         Signature: (a(m=2); [o]c())
232
233       complex argument function ("angle")
234
235       Carg does not process bad values.  It will set the bad-value flag of
236       all output piddles if the flag is set for any of the input piddles.
237
238   Csin
239         Signature: (a(m=2); [o]c(m=2))
240
241         sin (a) = 1/(2*i) * (exp (a*i) - exp (-a*i))
242
243       Csin does not process bad values.  It will set the bad-value flag of
244       all output piddles if the flag is set for any of the input piddles.
245
246   Ccos
247         Signature: (a(m=2); [o]c(m=2))
248
249         cos (a) = 1/2 * (exp (a*i) + exp (-a*i))
250
251       Ccos does not process bad values.  It will set the bad-value flag of
252       all output piddles if the flag is set for any of the input piddles.
253
254   Ctan a [not inplace]
255         tan (a) = -i * (exp (a*i) - exp (-a*i)) / (exp (a*i) + exp (-a*i))
256
257   Cexp
258         Signature: (a(m=2); [o]c(m=2))
259
260       exp (a) = exp (real (a)) * (cos (imag (a)) + i * sin (imag (a)))
261
262       Cexp does not process bad values.  It will set the bad-value flag of
263       all output piddles if the flag is set for any of the input piddles.
264
265   Clog
266         Signature: (a(m=2); [o]c(m=2))
267
268       log (a) = log (cabs (a)) + i * carg (a)
269
270       Clog does not process bad values.  It will set the bad-value flag of
271       all output piddles if the flag is set for any of the input piddles.
272
273   Cpow
274         Signature: (a(m=2); b(m=2); [o]c(m=2))
275
276       complex "pow()" ("**"-operator)
277
278       Cpow does not process bad values.  It will set the bad-value flag of
279       all output piddles if the flag is set for any of the input piddles.
280
281   Csqrt
282         Signature: (a(m=2); [o]c(m=2))
283
284       Csqrt does not process bad values.  It will set the bad-value flag of
285       all output piddles if the flag is set for any of the input piddles.
286
287   Casin
288         Signature: (a(m=2); [o]c(m=2))
289
290       Casin does not process bad values.  It will set the bad-value flag of
291       all output piddles if the flag is set for any of the input piddles.
292
293   Cacos
294         Signature: (a(m=2); [o]c(m=2))
295
296       Cacos does not process bad values.  It will set the bad-value flag of
297       all output piddles if the flag is set for any of the input piddles.
298
299   Catan cplx [not inplace]
300       Return the complex "atan()".
301
302   Csinh
303         Signature: (a(m=2); [o]c(m=2))
304
305         sinh (a) = (exp (a) - exp (-a)) / 2
306
307       Csinh does not process bad values.  It will set the bad-value flag of
308       all output piddles if the flag is set for any of the input piddles.
309
310   Ccosh
311         Signature: (a(m=2); [o]c(m=2))
312
313         cosh (a) = (exp (a) + exp (-a)) / 2
314
315       Ccosh does not process bad values.  It will set the bad-value flag of
316       all output piddles if the flag is set for any of the input piddles.
317
318   Ctanh
319         Signature: (a(m=2); [o]c(m=2))
320
321       Ctanh does not process bad values.  It will set the bad-value flag of
322       all output piddles if the flag is set for any of the input piddles.
323
324   Casinh
325         Signature: (a(m=2); [o]c(m=2))
326
327       Casinh does not process bad values.  It will set the bad-value flag of
328       all output piddles if the flag is set for any of the input piddles.
329
330   Cacosh
331         Signature: (a(m=2); [o]c(m=2))
332
333       Cacosh does not process bad values.  It will set the bad-value flag of
334       all output piddles if the flag is set for any of the input piddles.
335
336   Catanh
337         Signature: (a(m=2); [o]c(m=2))
338
339       Catanh does not process bad values.  It will set the bad-value flag of
340       all output piddles if the flag is set for any of the input piddles.
341
342   Cproj
343         Signature: (a(m=2); [o]c(m=2))
344
345       compute the projection of a complex number to the riemann sphere
346
347       Cproj does not process bad values.  It will set the bad-value flag of
348       all output piddles if the flag is set for any of the input piddles.
349
350   Croots
351         Signature: (a(m=2); [o]c(m=2,n); int n => n)
352
353       Compute the "n" roots of "a". "n" must be a positive integer. The
354       result will always be a complex type!
355
356       Croots does not process bad values.  It will set the bad-value flag of
357       all output piddles if the flag is set for any of the input piddles.
358
359   re cplx, im cplx
360       Return the real or imaginary part of the complex number(s) given. These
361       are slicing operators, so data flow works. The real and imaginary parts
362       are returned as piddles (ref eq PDL).
363
364   rCpolynomial
365         Signature: (coeffs(n); x(c=2,m); [o]out(c=2,m))
366
367       evaluate the polynomial with (real) coefficients "coeffs" at the
368       (complex) position(s) "x". "coeffs[0]" is the constant term.
369
370       rCpolynomial does not process bad values.  It will set the bad-value
371       flag of all output piddles if the flag is set for any of the input
372       piddles.
373

AUTHOR

375       Copyright (C) 2000 Marc Lehmann <pcg@goof.com>.  All rights reserved.
376       There is no warranty. You are allowed to redistribute this software /
377       documentation as described in the file COPYING in the PDL distribution.
378

SEE ALSO

380       perl(1), PDL.
381
382
383
384perl v5.12.3                      2011-03-31                        Complex(3)
Impressum