1mlpack_local_coordinate_coding(1)User Commandsmlpack_local_coordinate_coding(1)
2
3
4
6 mlpack_local_coordinate_coding - local coordinate coding
7
9 mlpack_local_coordinate_coding [-k int] [-i string] [-m unknown] [-l double] [-n int] [-N bool] [-s int] [-T string] [-o double] [-t string] [-V bool] [-c string] [-d string] [-M unknown] [-h -v]
10
12 An implementation of Local Coordinate Coding (LCC), which codes data
13 that approximately lives on a manifold using a variation of l1-norm
14 regularized sparse coding. Given a dense data matrix X with n points
15 and d dimensions, LCC seeks to find a dense dictionary matrix D with k
16 atoms in d dimensions, and a coding matrix Z with n points in k dimen‐
17 sions. Because of the regularization method used, the atoms in D should
18 lie close to the manifold on which the data points lie.
19
20 The original data matrix X can then be reconstructed as D * Z. There‐
21 fore, this program finds a representation of each point in X as a
22 sparse linear combination of atoms in the dictionary D.
23
24 The coding is found with an algorithm which alternates between a dic‐
25 tionary step, which updates the dictionary D, and a coding step, which
26 updates the coding matrix Z.
27
28 To run this program, the input matrix X must be specified (with -i),
29 along with the number of atoms in the dictionary (-k). An initial dic‐
30 tionary may also be specified with the '--initial_dictionary_file (-i)'
31 parameter. The l1-norm regularization parameter is specified with the
32 '--lambda (-l)' parameter. For example, to run LCC on the dataset
33 'data.csv' using 200 atoms and an l1-regularization parameter of 0.1,
34 saving the dictionary ’--dictionary_file (-d)' and the codes into
35 '--codes_file (-c)', use
36
37 $ local_coordinate_coding --training_file data.csv --atoms 200 --lambda
38 0.1 --dictionary_file dict.csv --codes_file codes.csv
39
40 The maximum number of iterations may be specified with the '--max_iter‐
41 ations (-n)' parameter. Optionally, the input data matrix X can be nor‐
42 malized before coding with the '--normalize (-N)' parameter.
43
44 An LCC model may be saved using the '--output_model_file (-M)' output
45 parameter. Then, to encode new points from the dataset 'points.csv'
46 with the previously saved model 'lcc_model.bin', saving the new codes
47 to ’new_codes.csv', the following command can be used:
48
49 $ local_coordinate_coding --input_model_file lcc_model.bin --test_file
50 points.csv --codes_file new_codes.csv
51
53 --atoms (-k) [int]
54 Number of atoms in the dictionary. Default value 0.
55
56 --help (-h) [bool]
57 Default help info.
58
59 --info [string]
60 Get help on a specific module or option. Default value ''.
61
62 --initial_dictionary_file (-i) [string]
63 Optional initial dictionary. Default value ''.
64
65 --input_model_file (-m) [unknown]
66 Input LCC model. Default value ''.
67
68 --lambda (-l) [double]
69 Weighted l1-norm regularization parameter. Default value 0.
70
71 --max_iterations (-n) [int]
72 Maximum number of iterations for LCC (0 indicates no limit).
73 Default value 0.
74
75 --normalize (-N) [bool]
76 If set, the input data matrix will be normalized before coding.
77
78 --seed (-s) [int]
79 Random seed. If 0, 'std::time(NULL)' is used. Default value 0.
80
81 --test_file (-T) [string]
82 Test points to encode. Default value ''.
83
84 --tolerance (-o) [double]
85 Tolerance for objective function. Default value 0.01.
86
87 --training_file (-t) [string]
88 Matrix of training data (X). Default value ''.
89
90 --verbose (-v) [bool]
91 Display informational messages and the full list of parameters
92 and timers at the end of execution.
93
94 --version (-V) [bool]
95 Display the version of mlpack.
96
98 --codes_file (-c) [string]
99 Output codes matrix. Default value ''.
100
101 --dictionary_file (-d) [string]
102 Output dictionary matrix. Default value ''.
103
104 --output_model_file (-M) [unknown]
105 Output for trained LCC model. Default value ''.
106
108 For further information, including relevant papers, citations, and the‐
109 ory, consult the documentation found at http://www.mlpack.org or
110 included with your distribution of mlpack.
111
112
113
114mlpack-3.0.4 21 February 201m9lpack_local_coordinate_coding(1)