1Complex(3) OCaml library Complex(3)
2
3
4
6 Complex - Complex numbers.
7
9 Module Complex
10
12 Module Complex
13 : sig end
14
15
16 Complex numbers.
17
18 This module provides arithmetic operations on complex numbers. Complex
19 numbers are represented by their real and imaginary parts (cartesian
20 representation). Each part is represented by a double-precision floatā
21 ing-point number (type float ).
22
23
24
25
26
27 type t = {
28 re : float ;
29 im : float ;
30 }
31
32
33 The type of complex numbers. re is the real part and im the imaginary
34 part.
35
36
37
38 val zero : t
39
40 The complex number 0 .
41
42
43
44 val one : t
45
46 The complex number 1 .
47
48
49
50 val i : t
51
52 The complex number i .
53
54
55
56 val neg : t -> t
57
58 Unary negation.
59
60
61
62 val conj : t -> t
63
64 Conjugate: given the complex x + i.y , returns x - i.y .
65
66
67
68 val add : t -> t -> t
69
70 Addition
71
72
73
74 val sub : t -> t -> t
75
76 Subtraction
77
78
79
80 val mul : t -> t -> t
81
82 Multiplication
83
84
85
86 val inv : t -> t
87
88 Multiplicative inverse ( 1/z ).
89
90
91
92 val div : t -> t -> t
93
94 Division
95
96
97
98 val sqrt : t -> t
99
100 Square root. The result x + i.y is such that x > 0 or x = 0 and y >= 0
101 . This function has a discontinuity along the negative real axis.
102
103
104
105 val norm2 : t -> float
106
107 Norm squared: given x + i.y , returns x^2 + y^2 .
108
109
110
111 val norm : t -> float
112
113 Norm: given x + i.y , returns sqrt(x^2 + y^2) .
114
115
116
117 val arg : t -> float
118
119 Argument. The argument of a complex number is the angle in the complex
120 plane between the positive real axis and a line passing through zero
121 and the number. This angle ranges from -pi to pi . This function has
122 a discontinuity along the negative real axis.
123
124
125
126 val polar : float -> float -> t
127
128
129 polar norm arg returns the complex having norm norm and argument arg .
130
131
132
133 val exp : t -> t
134
135 Exponentiation. exp z returns e to the z power.
136
137
138
139 val log : t -> t
140
141 Natural logarithm (in base e ).
142
143
144
145 val pow : t -> t -> t
146
147 Power function. pow z1 z2 returns z1 to the z2 power.
148
149
150
151
152
153OCamldoc 2018-07-14 Complex(3)