1Complex(3) OCaml library Complex(3)
2
3
4
6 Complex - Complex numbers.
7
9 Module Complex
10
12 Module Complex
13 : sig end
14
15
16 Complex numbers.
17
18 This module provides arithmetic operations on complex numbers. Complex
19 numbers are represented by their real and imaginary parts (cartesian
20 representation). Each part is represented by a double-precision floatā
21 ing-point number (type float ).
22
23
24
25
26
27
28 type t = {
29 re : float ;
30 im : float ;
31 }
32
33
34 The type of complex numbers. re is the real part and im the imaginary
35 part.
36
37
38
39
40 val zero : t
41
42 The complex number 0 .
43
44
45
46
47 val one : t
48
49 The complex number 1 .
50
51
52
53
54 val i : t
55
56 The complex number i .
57
58
59
60
61 val neg : t -> t
62
63 Unary negation.
64
65
66
67
68 val conj : t -> t
69
70 Conjugate: given the complex x + i.y , returns x - i.y .
71
72
73
74
75 val add : t -> t -> t
76
77 Addition
78
79
80
81
82 val sub : t -> t -> t
83
84 Subtraction
85
86
87
88
89 val mul : t -> t -> t
90
91 Multiplication
92
93
94
95
96 val inv : t -> t
97
98 Multiplicative inverse ( 1/z ).
99
100
101
102
103 val div : t -> t -> t
104
105 Division
106
107
108
109
110 val sqrt : t -> t
111
112 Square root. The result x + i.y is such that x > 0 or x = 0 and y >= 0
113 . This function has a discontinuity along the negative real axis.
114
115
116
117
118 val norm2 : t -> float
119
120 Norm squared: given x + i.y , returns x^2 + y^2 .
121
122
123
124
125 val norm : t -> float
126
127 Norm: given x + i.y , returns sqrt(x^2 + y^2) .
128
129
130
131
132 val arg : t -> float
133
134 Argument. The argument of a complex number is the angle in the complex
135 plane between the positive real axis and a line passing through zero
136 and the number. This angle ranges from -pi to pi . This function has
137 a discontinuity along the negative real axis.
138
139
140
141
142 val polar : float -> float -> t
143
144
145 polar norm arg returns the complex having norm norm and argument arg .
146
147
148
149
150 val exp : t -> t
151
152 Exponentiation. exp z returns e to the z power.
153
154
155
156
157 val log : t -> t
158
159 Natural logarithm (in base e ).
160
161
162
163
164 val pow : t -> t -> t
165
166 Power function. pow z1 z2 returns z1 to the z2 power.
167
168
169
170
171
172
173OCamldoc 2007-05-24 Complex(3)