1Math::BigFloat(3) User Contributed Perl Documentation Math::BigFloat(3)
2
3
4
6 Math::BigFloat - Arbitrary size floating point math package
7
9 use Math::BigFloat;
10
11 # Configuration methods (may be used as class methods and instance methods)
12
13 Math::BigFloat->accuracy(); # get class accuracy
14 Math::BigFloat->accuracy($n); # set class accuracy
15 Math::BigFloat->precision(); # get class precision
16 Math::BigFloat->precision($n); # set class precision
17 Math::BigFloat->round_mode(); # get class rounding mode
18 Math::BigFloat->round_mode($m); # set global round mode, must be one of
19 # 'even', 'odd', '+inf', '-inf', 'zero',
20 # 'trunc', or 'common'
21 Math::BigFloat->config("lib"); # name of backend math library
22
23 # Constructor methods (when the class methods below are used as instance
24 # methods, the value is assigned the invocand)
25
26 $x = Math::BigFloat->new($str); # defaults to 0
27 $x = Math::BigFloat->new('0x123'); # from hexadecimal
28 $x = Math::BigFloat->new('0b101'); # from binary
29 $x = Math::BigFloat->from_hex('0xc.afep+3'); # from hex
30 $x = Math::BigFloat->from_hex('cafe'); # ditto
31 $x = Math::BigFloat->from_oct('1.3267p-4'); # from octal
32 $x = Math::BigFloat->from_oct('0377'); # ditto
33 $x = Math::BigFloat->from_bin('0b1.1001p-4'); # from binary
34 $x = Math::BigFloat->from_bin('0101'); # ditto
35 $x = Math::BigFloat->bzero(); # create a +0
36 $x = Math::BigFloat->bone(); # create a +1
37 $x = Math::BigFloat->bone('-'); # create a -1
38 $x = Math::BigFloat->binf(); # create a +inf
39 $x = Math::BigFloat->binf('-'); # create a -inf
40 $x = Math::BigFloat->bnan(); # create a Not-A-Number
41 $x = Math::BigFloat->bpi(); # returns pi
42
43 $y = $x->copy(); # make a copy (unlike $y = $x)
44 $y = $x->as_int(); # return as BigInt
45
46 # Boolean methods (these don't modify the invocand)
47
48 $x->is_zero(); # if $x is 0
49 $x->is_one(); # if $x is +1
50 $x->is_one("+"); # ditto
51 $x->is_one("-"); # if $x is -1
52 $x->is_inf(); # if $x is +inf or -inf
53 $x->is_inf("+"); # if $x is +inf
54 $x->is_inf("-"); # if $x is -inf
55 $x->is_nan(); # if $x is NaN
56
57 $x->is_positive(); # if $x > 0
58 $x->is_pos(); # ditto
59 $x->is_negative(); # if $x < 0
60 $x->is_neg(); # ditto
61
62 $x->is_odd(); # if $x is odd
63 $x->is_even(); # if $x is even
64 $x->is_int(); # if $x is an integer
65
66 # Comparison methods
67
68 $x->bcmp($y); # compare numbers (undef, < 0, == 0, > 0)
69 $x->bacmp($y); # compare absolutely (undef, < 0, == 0, > 0)
70 $x->beq($y); # true if and only if $x == $y
71 $x->bne($y); # true if and only if $x != $y
72 $x->blt($y); # true if and only if $x < $y
73 $x->ble($y); # true if and only if $x <= $y
74 $x->bgt($y); # true if and only if $x > $y
75 $x->bge($y); # true if and only if $x >= $y
76
77 # Arithmetic methods
78
79 $x->bneg(); # negation
80 $x->babs(); # absolute value
81 $x->bsgn(); # sign function (-1, 0, 1, or NaN)
82 $x->bnorm(); # normalize (no-op)
83 $x->binc(); # increment $x by 1
84 $x->bdec(); # decrement $x by 1
85 $x->badd($y); # addition (add $y to $x)
86 $x->bsub($y); # subtraction (subtract $y from $x)
87 $x->bmul($y); # multiplication (multiply $x by $y)
88 $x->bmuladd($y,$z); # $x = $x * $y + $z
89 $x->bdiv($y); # division (floored), set $x to quotient
90 # return (quo,rem) or quo if scalar
91 $x->btdiv($y); # division (truncated), set $x to quotient
92 # return (quo,rem) or quo if scalar
93 $x->bmod($y); # modulus (x % y)
94 $x->btmod($y); # modulus (truncated)
95 $x->bmodinv($mod); # modular multiplicative inverse
96 $x->bmodpow($y,$mod); # modular exponentiation (($x ** $y) % $mod)
97 $x->bpow($y); # power of arguments (x ** y)
98 $x->blog(); # logarithm of $x to base e (Euler's number)
99 $x->blog($base); # logarithm of $x to base $base (e.g., base 2)
100 $x->bexp(); # calculate e ** $x where e is Euler's number
101 $x->bnok($y); # x over y (binomial coefficient n over k)
102 $x->bsin(); # sine
103 $x->bcos(); # cosine
104 $x->batan(); # inverse tangent
105 $x->batan2($y); # two-argument inverse tangent
106 $x->bsqrt(); # calculate square root
107 $x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
108 $x->bfac(); # factorial of $x (1*2*3*4*..$x)
109
110 $x->blsft($n); # left shift $n places in base 2
111 $x->blsft($n,$b); # left shift $n places in base $b
112 # returns (quo,rem) or quo (scalar context)
113 $x->brsft($n); # right shift $n places in base 2
114 $x->brsft($n,$b); # right shift $n places in base $b
115 # returns (quo,rem) or quo (scalar context)
116
117 # Bitwise methods
118
119 $x->band($y); # bitwise and
120 $x->bior($y); # bitwise inclusive or
121 $x->bxor($y); # bitwise exclusive or
122 $x->bnot(); # bitwise not (two's complement)
123
124 # Rounding methods
125 $x->round($A,$P,$mode); # round to accuracy or precision using
126 # rounding mode $mode
127 $x->bround($n); # accuracy: preserve $n digits
128 $x->bfround($n); # $n > 0: round to $nth digit left of dec. point
129 # $n < 0: round to $nth digit right of dec. point
130 $x->bfloor(); # round towards minus infinity
131 $x->bceil(); # round towards plus infinity
132 $x->bint(); # round towards zero
133
134 # Other mathematical methods
135
136 $x->bgcd($y); # greatest common divisor
137 $x->blcm($y); # least common multiple
138
139 # Object property methods (do not modify the invocand)
140
141 $x->sign(); # the sign, either +, - or NaN
142 $x->digit($n); # the nth digit, counting from the right
143 $x->digit(-$n); # the nth digit, counting from the left
144 $x->length(); # return number of digits in number
145 ($xl,$f) = $x->length(); # length of number and length of fraction
146 # part, latter is always 0 digits long
147 # for Math::BigInt objects
148 $x->mantissa(); # return (signed) mantissa as BigInt
149 $x->exponent(); # return exponent as BigInt
150 $x->parts(); # return (mantissa,exponent) as BigInt
151 $x->sparts(); # mantissa and exponent (as integers)
152 $x->nparts(); # mantissa and exponent (normalised)
153 $x->eparts(); # mantissa and exponent (engineering notation)
154 $x->dparts(); # integer and fraction part
155
156 # Conversion methods (do not modify the invocand)
157
158 $x->bstr(); # decimal notation, possibly zero padded
159 $x->bsstr(); # string in scientific notation with integers
160 $x->bnstr(); # string in normalized notation
161 $x->bestr(); # string in engineering notation
162 $x->bdstr(); # string in decimal notation
163 $x->as_hex(); # as signed hexadecimal string with prefixed 0x
164 $x->as_bin(); # as signed binary string with prefixed 0b
165 $x->as_oct(); # as signed octal string with prefixed 0
166
167 # Other conversion methods
168
169 $x->numify(); # return as scalar (might overflow or underflow)
170
172 Math::BigFloat provides support for arbitrary precision floating point.
173 Overloading is also provided for Perl operators.
174
175 All operators (including basic math operations) are overloaded if you
176 declare your big floating point numbers as
177
178 $x = Math::BigFloat -> new('12_3.456_789_123_456_789E-2');
179
180 Operations with overloaded operators preserve the arguments, which is
181 exactly what you expect.
182
183 Input
184 Input values to these routines may be any scalar number or string that
185 looks like a number and represents a floating point number.
186
187 · Leading and trailing whitespace is ignored.
188
189 · Leading and trailing zeros are ignored.
190
191 · If the string has a "0x" prefix, it is interpreted as a hexadecimal
192 number.
193
194 · If the string has a "0b" prefix, it is interpreted as a binary
195 number.
196
197 · For hexadecimal and binary numbers, the exponent must be separated
198 from the significand (mantissa) by the letter "p" or "P", not "e"
199 or "E" as with decimal numbers.
200
201 · One underline is allowed between any two digits, including
202 hexadecimal and binary digits.
203
204 · If the string can not be interpreted, NaN is returned.
205
206 Octal numbers are typically prefixed by "0", but since leading zeros
207 are stripped, these methods can not automatically recognize octal
208 numbers, so use the constructor from_oct() to interpret octal strings.
209
210 Some examples of valid string input
211
212 Input string Resulting value
213 123 123
214 1.23e2 123
215 12300e-2 123
216 0xcafe 51966
217 0b1101 13
218 67_538_754 67538754
219 -4_5_6.7_8_9e+0_1_0 -4567890000000
220 0x1.921fb5p+1 3.14159262180328369140625e+0
221 0b1.1001p-4 9.765625e-2
222
223 Output
224 Output values are usually Math::BigFloat objects.
225
226 Boolean operators "is_zero()", "is_one()", "is_inf()", etc. return true
227 or false.
228
229 Comparison operators "bcmp()" and "bacmp()") return -1, 0, 1, or undef.
230
232 Math::BigFloat supports all methods that Math::BigInt supports, except
233 it calculates non-integer results when possible. Please see
234 Math::BigInt for a full description of each method. Below are just the
235 most important differences:
236
237 Configuration methods
238 accuracy()
239 $x->accuracy(5); # local for $x
240 CLASS->accuracy(5); # global for all members of CLASS
241 # Note: This also applies to new()!
242
243 $A = $x->accuracy(); # read out accuracy that affects $x
244 $A = CLASS->accuracy(); # read out global accuracy
245
246 Set or get the global or local accuracy, aka how many significant
247 digits the results have. If you set a global accuracy, then this
248 also applies to new()!
249
250 Warning! The accuracy sticks, e.g. once you created a number under
251 the influence of "CLASS->accuracy($A)", all results from math
252 operations with that number will also be rounded.
253
254 In most cases, you should probably round the results explicitly
255 using one of "round()" in Math::BigInt, "bround()" in Math::BigInt
256 or "bfround()" in Math::BigInt or by passing the desired accuracy
257 to the math operation as additional parameter:
258
259 my $x = Math::BigInt->new(30000);
260 my $y = Math::BigInt->new(7);
261 print scalar $x->copy()->bdiv($y, 2); # print 4300
262 print scalar $x->copy()->bdiv($y)->bround(2); # print 4300
263
264 precision()
265 $x->precision(-2); # local for $x, round at the second
266 # digit right of the dot
267 $x->precision(2); # ditto, round at the second digit
268 # left of the dot
269
270 CLASS->precision(5); # Global for all members of CLASS
271 # This also applies to new()!
272 CLASS->precision(-5); # ditto
273
274 $P = CLASS->precision(); # read out global precision
275 $P = $x->precision(); # read out precision that affects $x
276
277 Note: You probably want to use "accuracy()" instead. With
278 "accuracy()" you set the number of digits each result should have,
279 with "precision()" you set the place where to round!
280
281 Constructor methods
282 from_hex()
283 $x -> from_hex("0x1.921fb54442d18p+1");
284 $x = Math::BigFloat -> from_hex("0x1.921fb54442d18p+1");
285
286 Interpret input as a hexadecimal string.A prefix ("0x", "x",
287 ignoring case) is optional. A single underscore character ("_") may
288 be placed between any two digits. If the input is invalid, a NaN is
289 returned. The exponent is in base 2 using decimal digits.
290
291 If called as an instance method, the value is assigned to the
292 invocand.
293
294 from_oct()
295 $x -> from_oct("1.3267p-4");
296 $x = Math::BigFloat -> from_oct("1.3267p-4");
297
298 Interpret input as an octal string. A single underscore character
299 ("_") may be placed between any two digits. If the input is
300 invalid, a NaN is returned. The exponent is in base 2 using decimal
301 digits.
302
303 If called as an instance method, the value is assigned to the
304 invocand.
305
306 from_bin()
307 $x -> from_bin("0b1.1001p-4");
308 $x = Math::BigFloat -> from_bin("0b1.1001p-4");
309
310 Interpret input as a hexadecimal string. A prefix ("0b" or "b",
311 ignoring case) is optional. A single underscore character ("_") may
312 be placed between any two digits. If the input is invalid, a NaN is
313 returned. The exponent is in base 2 using decimal digits.
314
315 If called as an instance method, the value is assigned to the
316 invocand.
317
318 bpi()
319 print Math::BigFloat->bpi(100), "\n";
320
321 Calculate PI to N digits (including the 3 before the dot). The
322 result is rounded according to the current rounding mode, which
323 defaults to "even".
324
325 This method was added in v1.87 of Math::BigInt (June 2007).
326
327 Arithmetic methods
328 bmuladd()
329 $x->bmuladd($y,$z);
330
331 Multiply $x by $y, and then add $z to the result.
332
333 This method was added in v1.87 of Math::BigInt (June 2007).
334
335 bdiv()
336 $q = $x->bdiv($y);
337 ($q, $r) = $x->bdiv($y);
338
339 In scalar context, divides $x by $y and returns the result to the
340 given or default accuracy/precision. In list context, does floored
341 division (F-division), returning an integer $q and a remainder $r
342 so that $x = $q * $y + $r. The remainer (modulo) is equal to what
343 is returned by "$x-"bmod($y)>.
344
345 bmod()
346 $x->bmod($y);
347
348 Returns $x modulo $y. When $x is finite, and $y is finite and non-
349 zero, the result is identical to the remainder after floored
350 division (F-division). If, in addition, both $x and $y are
351 integers, the result is identical to the result from Perl's %
352 operator.
353
354 bexp()
355 $x->bexp($accuracy); # calculate e ** X
356
357 Calculates the expression "e ** $x" where "e" is Euler's number.
358
359 This method was added in v1.82 of Math::BigInt (April 2007).
360
361 bnok()
362 $x->bnok($y); # x over y (binomial coefficient n over k)
363
364 Calculates the binomial coefficient n over k, also called the
365 "choose" function. The result is equivalent to:
366
367 ( n ) n!
368 | - | = -------
369 ( k ) k!(n-k)!
370
371 This method was added in v1.84 of Math::BigInt (April 2007).
372
373 bsin()
374 my $x = Math::BigFloat->new(1);
375 print $x->bsin(100), "\n";
376
377 Calculate the sinus of $x, modifying $x in place.
378
379 This method was added in v1.87 of Math::BigInt (June 2007).
380
381 bcos()
382 my $x = Math::BigFloat->new(1);
383 print $x->bcos(100), "\n";
384
385 Calculate the cosinus of $x, modifying $x in place.
386
387 This method was added in v1.87 of Math::BigInt (June 2007).
388
389 batan()
390 my $x = Math::BigFloat->new(1);
391 print $x->batan(100), "\n";
392
393 Calculate the arcus tanges of $x, modifying $x in place. See also
394 "batan2()".
395
396 This method was added in v1.87 of Math::BigInt (June 2007).
397
398 batan2()
399 my $y = Math::BigFloat->new(2);
400 my $x = Math::BigFloat->new(3);
401 print $y->batan2($x), "\n";
402
403 Calculate the arcus tanges of $y divided by $x, modifying $y in
404 place. See also "batan()".
405
406 This method was added in v1.87 of Math::BigInt (June 2007).
407
408 as_float()
409 This method is called when Math::BigFloat encounters an object it
410 doesn't know how to handle. For instance, assume $x is a
411 Math::BigFloat, or subclass thereof, and $y is defined, but not a
412 Math::BigFloat, or subclass thereof. If you do
413
414 $x -> badd($y);
415
416 $y needs to be converted into an object that $x can deal with. This
417 is done by first checking if $y is something that $x might be
418 upgraded to. If that is the case, no further attempts are made. The
419 next is to see if $y supports the method "as_float()". The method
420 "as_float()" is expected to return either an object that has the
421 same class as $x, a subclass thereof, or a string that
422 "ref($x)->new()" can parse to create an object.
423
424 In Math::BigFloat, "as_float()" has the same effect as "copy()".
425
426 ACCURACY AND PRECISION
427 See also: Rounding.
428
429 Math::BigFloat supports both precision (rounding to a certain place
430 before or after the dot) and accuracy (rounding to a certain number of
431 digits). For a full documentation, examples and tips on these topics
432 please see the large section about rounding in Math::BigInt.
433
434 Since things like sqrt(2) or "1 / 3" must presented with a limited
435 accuracy lest a operation consumes all resources, each operation
436 produces no more than the requested number of digits.
437
438 If there is no global precision or accuracy set, and the operation in
439 question was not called with a requested precision or accuracy, and the
440 input $x has no accuracy or precision set, then a fallback parameter
441 will be used. For historical reasons, it is called "div_scale" and can
442 be accessed via:
443
444 $d = Math::BigFloat->div_scale(); # query
445 Math::BigFloat->div_scale($n); # set to $n digits
446
447 The default value for "div_scale" is 40.
448
449 In case the result of one operation has more digits than specified, it
450 is rounded. The rounding mode taken is either the default mode, or the
451 one supplied to the operation after the scale:
452
453 $x = Math::BigFloat->new(2);
454 Math::BigFloat->accuracy(5); # 5 digits max
455 $y = $x->copy()->bdiv(3); # gives 0.66667
456 $y = $x->copy()->bdiv(3,6); # gives 0.666667
457 $y = $x->copy()->bdiv(3,6,undef,'odd'); # gives 0.666667
458 Math::BigFloat->round_mode('zero');
459 $y = $x->copy()->bdiv(3,6); # will also give 0.666667
460
461 Note that "Math::BigFloat->accuracy()" and
462 "Math::BigFloat->precision()" set the global variables, and thus any
463 newly created number will be subject to the global rounding
464 immediately. This means that in the examples above, the 3 as argument
465 to "bdiv()" will also get an accuracy of 5.
466
467 It is less confusing to either calculate the result fully, and
468 afterwards round it explicitly, or use the additional parameters to the
469 math functions like so:
470
471 use Math::BigFloat;
472 $x = Math::BigFloat->new(2);
473 $y = $x->copy()->bdiv(3);
474 print $y->bround(5),"\n"; # gives 0.66667
475
476 or
477
478 use Math::BigFloat;
479 $x = Math::BigFloat->new(2);
480 $y = $x->copy()->bdiv(3,5); # gives 0.66667
481 print "$y\n";
482
483 Rounding
484 bfround ( +$scale )
485 Rounds to the $scale'th place left from the '.', counting from the
486 dot. The first digit is numbered 1.
487
488 bfround ( -$scale )
489 Rounds to the $scale'th place right from the '.', counting from the
490 dot.
491
492 bfround ( 0 )
493 Rounds to an integer.
494
495 bround ( +$scale )
496 Preserves accuracy to $scale digits from the left (aka significant
497 digits) and pads the rest with zeros. If the number is between 1
498 and -1, the significant digits count from the first non-zero after
499 the '.'
500
501 bround ( -$scale ) and bround ( 0 )
502 These are effectively no-ops.
503
504 All rounding functions take as a second parameter a rounding mode from
505 one of the following: 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or
506 'common'.
507
508 The default rounding mode is 'even'. By using
509 "Math::BigFloat->round_mode($round_mode);" you can get and set the
510 default mode for subsequent rounding. The usage of
511 "$Math::BigFloat::$round_mode" is no longer supported. The second
512 parameter to the round functions then overrides the default
513 temporarily.
514
515 The "as_number()" function returns a BigInt from a Math::BigFloat. It
516 uses 'trunc' as rounding mode to make it equivalent to:
517
518 $x = 2.5;
519 $y = int($x) + 2;
520
521 You can override this by passing the desired rounding mode as parameter
522 to "as_number()":
523
524 $x = Math::BigFloat->new(2.5);
525 $y = $x->as_number('odd'); # $y = 3
526
528 After "use Math::BigFloat ':constant'" all the floating point constants
529 in the given scope are converted to "Math::BigFloat". This conversion
530 happens at compile time.
531
532 In particular
533
534 perl -MMath::BigFloat=:constant -e 'print 2E-100,"\n"'
535
536 prints the value of "2E-100". Note that without conversion of constants
537 the expression 2E-100 will be calculated as normal floating point
538 number.
539
540 Please note that ':constant' does not affect integer constants, nor
541 binary nor hexadecimal constants. Use bignum or Math::BigInt to get
542 this to work.
543
544 Math library
545 Math with the numbers is done (by default) by a module called
546 Math::BigInt::Calc. This is equivalent to saying:
547
548 use Math::BigFloat lib => 'Calc';
549
550 You can change this by using:
551
552 use Math::BigFloat lib => 'GMP';
553
554 Note: General purpose packages should not be explicit about the library
555 to use; let the script author decide which is best.
556
557 Note: The keyword 'lib' will warn when the requested library could not
558 be loaded. To suppress the warning use 'try' instead:
559
560 use Math::BigFloat try => 'GMP';
561
562 If your script works with huge numbers and Calc is too slow for them,
563 you can also for the loading of one of these libraries and if none of
564 them can be used, the code will die:
565
566 use Math::BigFloat only => 'GMP,Pari';
567
568 The following would first try to find Math::BigInt::Foo, then
569 Math::BigInt::Bar, and when this also fails, revert to
570 Math::BigInt::Calc:
571
572 use Math::BigFloat lib => 'Foo,Math::BigInt::Bar';
573
574 See the respective low-level library documentation for further details.
575
576 Please note that Math::BigFloat does not use the denoted library
577 itself, but it merely passes the lib argument to Math::BigInt. So,
578 instead of the need to do:
579
580 use Math::BigInt lib => 'GMP';
581 use Math::BigFloat;
582
583 you can roll it all into one line:
584
585 use Math::BigFloat lib => 'GMP';
586
587 It is also possible to just require Math::BigFloat:
588
589 require Math::BigFloat;
590
591 This will load the necessary things (like BigInt) when they are needed,
592 and automatically.
593
594 See Math::BigInt for more details than you ever wanted to know about
595 using a different low-level library.
596
597 Using Math::BigInt::Lite
598 For backwards compatibility reasons it is still possible to request a
599 different storage class for use with Math::BigFloat:
600
601 use Math::BigFloat with => 'Math::BigInt::Lite';
602
603 However, this request is ignored, as the current code now uses the low-
604 level math library for directly storing the number parts.
605
607 "Math::BigFloat" exports nothing by default, but can export the "bpi()"
608 method:
609
610 use Math::BigFloat qw/bpi/;
611
612 print bpi(10), "\n";
613
615 Do not try to be clever to insert some operations in between switching
616 libraries:
617
618 require Math::BigFloat;
619 my $matter = Math::BigFloat->bone() + 4; # load BigInt and Calc
620 Math::BigFloat->import( lib => 'Pari' ); # load Pari, too
621 my $anti_matter = Math::BigFloat->bone()+4; # now use Pari
622
623 This will create objects with numbers stored in two different backend
624 libraries, and VERY BAD THINGS will happen when you use these together:
625
626 my $flash_and_bang = $matter + $anti_matter; # Don't do this!
627
628 stringify, bstr()
629 Both stringify and bstr() now drop the leading '+'. The old code
630 would return '+1.23', the new returns '1.23'. See the documentation
631 in Math::BigInt for reasoning and details.
632
633 brsft()
634 The following will probably not print what you expect:
635
636 my $c = Math::BigFloat->new('3.14159');
637 print $c->brsft(3,10),"\n"; # prints 0.00314153.1415
638
639 It prints both quotient and remainder, since print calls "brsft()"
640 in list context. Also, "$c->brsft()" will modify $c, so be careful.
641 You probably want to use
642
643 print scalar $c->copy()->brsft(3,10),"\n";
644 # or if you really want to modify $c
645 print scalar $c->brsft(3,10),"\n";
646
647 instead.
648
649 Modifying and =
650 Beware of:
651
652 $x = Math::BigFloat->new(5);
653 $y = $x;
654
655 It will not do what you think, e.g. making a copy of $x. Instead it
656 just makes a second reference to the same object and stores it in
657 $y. Thus anything that modifies $x will modify $y (except
658 overloaded math operators), and vice versa. See Math::BigInt for
659 details and how to avoid that.
660
661 precision() vs. accuracy()
662 A common pitfall is to use "precision()" when you want to round a
663 result to a certain number of digits:
664
665 use Math::BigFloat;
666
667 Math::BigFloat->precision(4); # does not do what you
668 # think it does
669 my $x = Math::BigFloat->new(12345); # rounds $x to "12000"!
670 print "$x\n"; # print "12000"
671 my $y = Math::BigFloat->new(3); # rounds $y to "0"!
672 print "$y\n"; # print "0"
673 $z = $x / $y; # 12000 / 0 => NaN!
674 print "$z\n";
675 print $z->precision(),"\n"; # 4
676
677 Replacing "precision()" with "accuracy()" is probably not what you
678 want, either:
679
680 use Math::BigFloat;
681
682 Math::BigFloat->accuracy(4); # enables global rounding:
683 my $x = Math::BigFloat->new(123456); # rounded immediately
684 # to "12350"
685 print "$x\n"; # print "123500"
686 my $y = Math::BigFloat->new(3); # rounded to "3
687 print "$y\n"; # print "3"
688 print $z = $x->copy()->bdiv($y),"\n"; # 41170
689 print $z->accuracy(),"\n"; # 4
690
691 What you want to use instead is:
692
693 use Math::BigFloat;
694
695 my $x = Math::BigFloat->new(123456); # no rounding
696 print "$x\n"; # print "123456"
697 my $y = Math::BigFloat->new(3); # no rounding
698 print "$y\n"; # print "3"
699 print $z = $x->copy()->bdiv($y,4),"\n"; # 41150
700 print $z->accuracy(),"\n"; # undef
701
702 In addition to computing what you expected, the last example also
703 does not "taint" the result with an accuracy or precision setting,
704 which would influence any further operation.
705
707 Please report any bugs or feature requests to "bug-math-bigint at
708 rt.cpan.org", or through the web interface at
709 <https://rt.cpan.org/Ticket/Create.html?Queue=Math-BigInt> (requires
710 login). We will be notified, and then you'll automatically be notified
711 of progress on your bug as I make changes.
712
714 You can find documentation for this module with the perldoc command.
715
716 perldoc Math::BigFloat
717
718 You can also look for information at:
719
720 · RT: CPAN's request tracker
721
722 <https://rt.cpan.org/Public/Dist/Display.html?Name=Math-BigInt>
723
724 · AnnoCPAN: Annotated CPAN documentation
725
726 <http://annocpan.org/dist/Math-BigInt>
727
728 · CPAN Ratings
729
730 <http://cpanratings.perl.org/dist/Math-BigInt>
731
732 · Search CPAN
733
734 <http://search.cpan.org/dist/Math-BigInt/>
735
736 · CPAN Testers Matrix
737
738 <http://matrix.cpantesters.org/?dist=Math-BigInt>
739
740 · The Bignum mailing list
741
742 · Post to mailing list
743
744 "bignum at lists.scsys.co.uk"
745
746 · View mailing list
747
748 <http://lists.scsys.co.uk/pipermail/bignum/>
749
750 · Subscribe/Unsubscribe
751
752 <http://lists.scsys.co.uk/cgi-bin/mailman/listinfo/bignum>
753
755 This program is free software; you may redistribute it and/or modify it
756 under the same terms as Perl itself.
757
759 Math::BigFloat and Math::BigInt as well as the backends
760 Math::BigInt::FastCalc, Math::BigInt::GMP, and Math::BigInt::Pari.
761
762 The pragmas bignum, bigint and bigrat also might be of interest because
763 they solve the autoupgrading/downgrading issue, at least partly.
764
766 · Mark Biggar, overloaded interface by Ilya Zakharevich, 1996-2001.
767
768 · Completely rewritten by Tels <http://bloodgate.com> in 2001-2008.
769
770 · Florian Ragwitz <flora@cpan.org>, 2010.
771
772 · Peter John Acklam <pjacklam@online.no>, 2011-.
773
774
775
776perl v5.28.1 2018-04-18 Math::BigFloat(3)