1Math::BigFloat(3) User Contributed Perl Documentation Math::BigFloat(3)
2
3
4
6 Math::BigFloat - arbitrary size floating point math package
7
9 use Math::BigFloat;
10
11 # Configuration methods (may be used as class methods and instance methods)
12
13 Math::BigFloat->accuracy(); # get class accuracy
14 Math::BigFloat->accuracy($n); # set class accuracy
15 Math::BigFloat->precision(); # get class precision
16 Math::BigFloat->precision($n); # set class precision
17 Math::BigFloat->round_mode(); # get class rounding mode
18 Math::BigFloat->round_mode($m); # set global round mode, must be one of
19 # 'even', 'odd', '+inf', '-inf', 'zero',
20 # 'trunc', or 'common'
21 Math::BigFloat->config("lib"); # name of backend math library
22
23 # Constructor methods (when the class methods below are used as instance
24 # methods, the value is assigned the invocand)
25
26 $x = Math::BigFloat->new($str); # defaults to 0
27 $x = Math::BigFloat->new('0x123'); # from hexadecimal
28 $x = Math::BigFloat->new('0o377'); # from octal
29 $x = Math::BigFloat->new('0b101'); # from binary
30 $x = Math::BigFloat->from_hex('0xc.afep+3'); # from hex
31 $x = Math::BigFloat->from_hex('cafe'); # ditto
32 $x = Math::BigFloat->from_oct('1.3267p-4'); # from octal
33 $x = Math::BigFloat->from_oct('01.3267p-4'); # ditto
34 $x = Math::BigFloat->from_oct('0o1.3267p-4'); # ditto
35 $x = Math::BigFloat->from_oct('0377'); # ditto
36 $x = Math::BigFloat->from_bin('0b1.1001p-4'); # from binary
37 $x = Math::BigFloat->from_bin('0101'); # ditto
38 $x = Math::BigFloat->from_ieee754($b, "binary64"); # from IEEE-754 bytes
39 $x = Math::BigFloat->bzero(); # create a +0
40 $x = Math::BigFloat->bone(); # create a +1
41 $x = Math::BigFloat->bone('-'); # create a -1
42 $x = Math::BigFloat->binf(); # create a +inf
43 $x = Math::BigFloat->binf('-'); # create a -inf
44 $x = Math::BigFloat->bnan(); # create a Not-A-Number
45 $x = Math::BigFloat->bpi(); # returns pi
46
47 $y = $x->copy(); # make a copy (unlike $y = $x)
48 $y = $x->as_int(); # return as BigInt
49 $y = $x->as_float(); # return as a Math::BigFloat
50 $y = $x->as_rat(); # return as a Math::BigRat
51
52 # Boolean methods (these don't modify the invocand)
53
54 $x->is_zero(); # if $x is 0
55 $x->is_one(); # if $x is +1
56 $x->is_one("+"); # ditto
57 $x->is_one("-"); # if $x is -1
58 $x->is_inf(); # if $x is +inf or -inf
59 $x->is_inf("+"); # if $x is +inf
60 $x->is_inf("-"); # if $x is -inf
61 $x->is_nan(); # if $x is NaN
62
63 $x->is_positive(); # if $x > 0
64 $x->is_pos(); # ditto
65 $x->is_negative(); # if $x < 0
66 $x->is_neg(); # ditto
67
68 $x->is_odd(); # if $x is odd
69 $x->is_even(); # if $x is even
70 $x->is_int(); # if $x is an integer
71
72 # Comparison methods
73
74 $x->bcmp($y); # compare numbers (undef, < 0, == 0, > 0)
75 $x->bacmp($y); # compare absolutely (undef, < 0, == 0, > 0)
76 $x->beq($y); # true if and only if $x == $y
77 $x->bne($y); # true if and only if $x != $y
78 $x->blt($y); # true if and only if $x < $y
79 $x->ble($y); # true if and only if $x <= $y
80 $x->bgt($y); # true if and only if $x > $y
81 $x->bge($y); # true if and only if $x >= $y
82
83 # Arithmetic methods
84
85 $x->bneg(); # negation
86 $x->babs(); # absolute value
87 $x->bsgn(); # sign function (-1, 0, 1, or NaN)
88 $x->bnorm(); # normalize (no-op)
89 $x->binc(); # increment $x by 1
90 $x->bdec(); # decrement $x by 1
91 $x->badd($y); # addition (add $y to $x)
92 $x->bsub($y); # subtraction (subtract $y from $x)
93 $x->bmul($y); # multiplication (multiply $x by $y)
94 $x->bmuladd($y,$z); # $x = $x * $y + $z
95 $x->bdiv($y); # division (floored), set $x to quotient
96 # return (quo,rem) or quo if scalar
97 $x->btdiv($y); # division (truncated), set $x to quotient
98 # return (quo,rem) or quo if scalar
99 $x->bmod($y); # modulus (x % y)
100 $x->btmod($y); # modulus (truncated)
101 $x->bmodinv($mod); # modular multiplicative inverse
102 $x->bmodpow($y,$mod); # modular exponentiation (($x ** $y) % $mod)
103 $x->bpow($y); # power of arguments (x ** y)
104 $x->blog(); # logarithm of $x to base e (Euler's number)
105 $x->blog($base); # logarithm of $x to base $base (e.g., base 2)
106 $x->bexp(); # calculate e ** $x where e is Euler's number
107 $x->bnok($y); # x over y (binomial coefficient n over k)
108 $x->bsin(); # sine
109 $x->bcos(); # cosine
110 $x->batan(); # inverse tangent
111 $x->batan2($y); # two-argument inverse tangent
112 $x->bsqrt(); # calculate square root
113 $x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
114 $x->bfac(); # factorial of $x (1*2*3*4*..$x)
115
116 $x->blsft($n); # left shift $n places in base 2
117 $x->blsft($n,$b); # left shift $n places in base $b
118 # returns (quo,rem) or quo (scalar context)
119 $x->brsft($n); # right shift $n places in base 2
120 $x->brsft($n,$b); # right shift $n places in base $b
121 # returns (quo,rem) or quo (scalar context)
122
123 # Bitwise methods
124
125 $x->band($y); # bitwise and
126 $x->bior($y); # bitwise inclusive or
127 $x->bxor($y); # bitwise exclusive or
128 $x->bnot(); # bitwise not (two's complement)
129
130 # Rounding methods
131 $x->round($A,$P,$mode); # round to accuracy or precision using
132 # rounding mode $mode
133 $x->bround($n); # accuracy: preserve $n digits
134 $x->bfround($n); # $n > 0: round to $nth digit left of dec. point
135 # $n < 0: round to $nth digit right of dec. point
136 $x->bfloor(); # round towards minus infinity
137 $x->bceil(); # round towards plus infinity
138 $x->bint(); # round towards zero
139
140 # Other mathematical methods
141
142 $x->bgcd($y); # greatest common divisor
143 $x->blcm($y); # least common multiple
144
145 # Object property methods (do not modify the invocand)
146
147 $x->sign(); # the sign, either +, - or NaN
148 $x->digit($n); # the nth digit, counting from the right
149 $x->digit(-$n); # the nth digit, counting from the left
150 $x->length(); # return number of digits in number
151 ($xl,$f) = $x->length(); # length of number and length of fraction
152 # part, latter is always 0 digits long
153 # for Math::BigInt objects
154 $x->mantissa(); # return (signed) mantissa as BigInt
155 $x->exponent(); # return exponent as BigInt
156 $x->parts(); # return (mantissa,exponent) as BigInt
157 $x->sparts(); # mantissa and exponent (as integers)
158 $x->nparts(); # mantissa and exponent (normalised)
159 $x->eparts(); # mantissa and exponent (engineering notation)
160 $x->dparts(); # integer and fraction part
161 $x->fparts(); # numerator and denominator
162 $x->numerator(); # numerator
163 $x->denominator(); # denominator
164
165 # Conversion methods (do not modify the invocand)
166
167 $x->bstr(); # decimal notation, possibly zero padded
168 $x->bsstr(); # string in scientific notation with integers
169 $x->bnstr(); # string in normalized notation
170 $x->bestr(); # string in engineering notation
171 $x->bdstr(); # string in decimal notation
172 $x->bfstr(); # string in fractional notation
173
174 $x->as_hex(); # as signed hexadecimal string with prefixed 0x
175 $x->as_bin(); # as signed binary string with prefixed 0b
176 $x->as_oct(); # as signed octal string with prefixed 0
177 $x->to_ieee754($format); # to bytes encoded according to IEEE 754-2008
178
179 # Other conversion methods
180
181 $x->numify(); # return as scalar (might overflow or underflow)
182
184 Math::BigFloat provides support for arbitrary precision floating point.
185 Overloading is also provided for Perl operators.
186
187 All operators (including basic math operations) are overloaded if you
188 declare your big floating point numbers as
189
190 $x = Math::BigFloat -> new('12_3.456_789_123_456_789E-2');
191
192 Operations with overloaded operators preserve the arguments, which is
193 exactly what you expect.
194
195 Input
196 Input values to these routines may be any scalar number or string that
197 looks like a number. Anything that is accepted by Perl as a literal
198 numeric constant should be accepted by this module.
199
200 • Leading and trailing whitespace is ignored.
201
202 • Leading zeros are ignored, except for floating point numbers with a
203 binary exponent, in which case the number is interpreted as an
204 octal floating point number. For example, "01.4p+0" gives 1.5,
205 "00.4p+0" gives 0.5, but "0.4p+0" gives a NaN. And while "0377"
206 gives 255, "0377p0" gives 255.
207
208 • If the string has a "0x" or "0X" prefix, it is interpreted as a
209 hexadecimal number.
210
211 • If the string has a "0o" or "0O" prefix, it is interpreted as an
212 octal number. A floating point literal with a "0" prefix is also
213 interpreted as an octal number.
214
215 • If the string has a "0b" or "0B" prefix, it is interpreted as a
216 binary number.
217
218 • Underline characters are allowed in the same way as they are
219 allowed in literal numerical constants.
220
221 • If the string can not be interpreted, NaN is returned.
222
223 • For hexadecimal, octal, and binary floating point numbers, the
224 exponent must be separated from the significand (mantissa) by the
225 letter "p" or "P", not "e" or "E" as with decimal numbers.
226
227 Some examples of valid string input
228
229 Input string Resulting value
230
231 123 123
232 1.23e2 123
233 12300e-2 123
234
235 67_538_754 67538754
236 -4_5_6.7_8_9e+0_1_0 -4567890000000
237
238 0x13a 314
239 0x13ap0 314
240 0x1.3ap+8 314
241 0x0.00013ap+24 314
242 0x13a000p-12 314
243
244 0o472 314
245 0o1.164p+8 314
246 0o0.0001164p+20 314
247 0o1164000p-10 314
248
249 0472 472 Note!
250 01.164p+8 314
251 00.0001164p+20 314
252 01164000p-10 314
253
254 0b100111010 314
255 0b1.0011101p+8 314
256 0b0.00010011101p+12 314
257 0b100111010000p-3 314
258
259 0x1.921fb5p+1 3.14159262180328369140625e+0
260 0o1.2677025p1 2.71828174591064453125
261 01.2677025p1 2.71828174591064453125
262 0b1.1001p-4 9.765625e-2
263
264 Output
265 Output values are usually Math::BigFloat objects.
266
267 Boolean operators is_zero(), is_one(), is_inf(), etc. return true or
268 false.
269
270 Comparison operators bcmp() and bacmp()) return -1, 0, 1, or undef.
271
273 Math::BigFloat supports all methods that Math::BigInt supports, except
274 it calculates non-integer results when possible. Please see
275 Math::BigInt for a full description of each method. Below are just the
276 most important differences:
277
278 Configuration methods
279 accuracy()
280 $x->accuracy(5); # local for $x
281 CLASS->accuracy(5); # global for all members of CLASS
282 # Note: This also applies to new()!
283
284 $A = $x->accuracy(); # read out accuracy that affects $x
285 $A = CLASS->accuracy(); # read out global accuracy
286
287 Set or get the global or local accuracy, aka how many significant
288 digits the results have. If you set a global accuracy, then this
289 also applies to new()!
290
291 Warning! The accuracy sticks, e.g. once you created a number under
292 the influence of "CLASS->accuracy($A)", all results from math
293 operations with that number will also be rounded.
294
295 In most cases, you should probably round the results explicitly
296 using one of "round()" in Math::BigInt, "bround()" in Math::BigInt
297 or "bfround()" in Math::BigInt or by passing the desired accuracy
298 to the math operation as additional parameter:
299
300 my $x = Math::BigInt->new(30000);
301 my $y = Math::BigInt->new(7);
302 print scalar $x->copy()->bdiv($y, 2); # print 4300
303 print scalar $x->copy()->bdiv($y)->bround(2); # print 4300
304
305 precision()
306 $x->precision(-2); # local for $x, round at the second
307 # digit right of the dot
308 $x->precision(2); # ditto, round at the second digit
309 # left of the dot
310
311 CLASS->precision(5); # Global for all members of CLASS
312 # This also applies to new()!
313 CLASS->precision(-5); # ditto
314
315 $P = CLASS->precision(); # read out global precision
316 $P = $x->precision(); # read out precision that affects $x
317
318 Note: You probably want to use "accuracy()" instead. With
319 "accuracy()" you set the number of digits each result should have,
320 with "precision()" you set the place where to round!
321
322 Constructor methods
323 from_hex()
324 $x -> from_hex("0x1.921fb54442d18p+1");
325 $x = Math::BigFloat -> from_hex("0x1.921fb54442d18p+1");
326
327 Interpret input as a hexadecimal string.A prefix ("0x", "x",
328 ignoring case) is optional. A single underscore character ("_") may
329 be placed between any two digits. If the input is invalid, a NaN is
330 returned. The exponent is in base 2 using decimal digits.
331
332 If called as an instance method, the value is assigned to the
333 invocand.
334
335 from_oct()
336 $x -> from_oct("1.3267p-4");
337 $x = Math::BigFloat -> from_oct("1.3267p-4");
338
339 Interpret input as an octal string. A single underscore character
340 ("_") may be placed between any two digits. If the input is
341 invalid, a NaN is returned. The exponent is in base 2 using decimal
342 digits.
343
344 If called as an instance method, the value is assigned to the
345 invocand.
346
347 from_bin()
348 $x -> from_bin("0b1.1001p-4");
349 $x = Math::BigFloat -> from_bin("0b1.1001p-4");
350
351 Interpret input as a hexadecimal string. A prefix ("0b" or "b",
352 ignoring case) is optional. A single underscore character ("_") may
353 be placed between any two digits. If the input is invalid, a NaN is
354 returned. The exponent is in base 2 using decimal digits.
355
356 If called as an instance method, the value is assigned to the
357 invocand.
358
359 from_ieee754()
360 Interpret the input as a value encoded as described in
361 IEEE754-2008. The input can be given as a byte string, hex string
362 or binary string. The input is assumed to be in big-endian byte-
363 order.
364
365 # both $dbl and $mbf are 3.141592...
366 $bytes = "\x40\x09\x21\xfb\x54\x44\x2d\x18";
367 $dbl = unpack "d>", $bytes;
368 $mbf = Math::BigFloat -> from_ieee754($bytes, "binary64");
369
370 bpi()
371 print Math::BigFloat->bpi(100), "\n";
372
373 Calculate PI to N digits (including the 3 before the dot). The
374 result is rounded according to the current rounding mode, which
375 defaults to "even".
376
377 This method was added in v1.87 of Math::BigInt (June 2007).
378
379 Arithmetic methods
380 bmuladd()
381 $x->bmuladd($y,$z);
382
383 Multiply $x by $y, and then add $z to the result.
384
385 This method was added in v1.87 of Math::BigInt (June 2007).
386
387 bdiv()
388 $q = $x->bdiv($y);
389 ($q, $r) = $x->bdiv($y);
390
391 In scalar context, divides $x by $y and returns the result to the
392 given or default accuracy/precision. In list context, does floored
393 division (F-division), returning an integer $q and a remainder $r
394 so that $x = $q * $y + $r. The remainer (modulo) is equal to what
395 is returned by "$x->bmod($y)".
396
397 bmod()
398 $x->bmod($y);
399
400 Returns $x modulo $y. When $x is finite, and $y is finite and non-
401 zero, the result is identical to the remainder after floored
402 division (F-division). If, in addition, both $x and $y are
403 integers, the result is identical to the result from Perl's %
404 operator.
405
406 bexp()
407 $x->bexp($accuracy); # calculate e ** X
408
409 Calculates the expression "e ** $x" where "e" is Euler's number.
410
411 This method was added in v1.82 of Math::BigInt (April 2007).
412
413 bnok()
414 $x->bnok($y); # x over y (binomial coefficient n over k)
415
416 Calculates the binomial coefficient n over k, also called the
417 "choose" function. The result is equivalent to:
418
419 ( n ) n!
420 | - | = -------
421 ( k ) k!(n-k)!
422
423 This method was added in v1.84 of Math::BigInt (April 2007).
424
425 bsin()
426 my $x = Math::BigFloat->new(1);
427 print $x->bsin(100), "\n";
428
429 Calculate the sinus of $x, modifying $x in place.
430
431 This method was added in v1.87 of Math::BigInt (June 2007).
432
433 bcos()
434 my $x = Math::BigFloat->new(1);
435 print $x->bcos(100), "\n";
436
437 Calculate the cosinus of $x, modifying $x in place.
438
439 This method was added in v1.87 of Math::BigInt (June 2007).
440
441 batan()
442 my $x = Math::BigFloat->new(1);
443 print $x->batan(100), "\n";
444
445 Calculate the arcus tanges of $x, modifying $x in place. See also
446 "batan2()".
447
448 This method was added in v1.87 of Math::BigInt (June 2007).
449
450 batan2()
451 my $y = Math::BigFloat->new(2);
452 my $x = Math::BigFloat->new(3);
453 print $y->batan2($x), "\n";
454
455 Calculate the arcus tanges of $y divided by $x, modifying $y in
456 place. See also "batan()".
457
458 This method was added in v1.87 of Math::BigInt (June 2007).
459
460 as_float()
461 This method is called when Math::BigFloat encounters an object it
462 doesn't know how to handle. For instance, assume $x is a
463 Math::BigFloat, or subclass thereof, and $y is defined, but not a
464 Math::BigFloat, or subclass thereof. If you do
465
466 $x -> badd($y);
467
468 $y needs to be converted into an object that $x can deal with. This
469 is done by first checking if $y is something that $x might be
470 upgraded to. If that is the case, no further attempts are made. The
471 next is to see if $y supports the method as_float(). The method
472 as_float() is expected to return either an object that has the same
473 class as $x, a subclass thereof, or a string that "ref($x)->new()"
474 can parse to create an object.
475
476 In Math::BigFloat, as_float() has the same effect as copy().
477
478 to_ieee754()
479 Encodes the invocand as a byte string in the given format as
480 specified in IEEE 754-2008. Note that the encoded value is the
481 nearest possible representation of the value. This value might not
482 be exactly the same as the value in the invocand.
483
484 # $x = 3.1415926535897932385
485 $x = Math::BigFloat -> bpi(30);
486
487 $b = $x -> to_ieee754("binary64"); # encode as 8 bytes
488 $h = unpack "H*", $b; # "400921fb54442d18"
489
490 # 3.141592653589793115997963...
491 $y = Math::BigFloat -> from_ieee754($h, "binary64");
492
493 All binary formats in IEEE 754-2008 are accepted. For convenience,
494 som aliases are recognized: "half" for "binary16", "single" for
495 "binary32", "double" for "binary64", "quadruple" for "binary128",
496 "octuple" for "binary256", and "sexdecuple" for "binary512".
497
498 See also <https://en.wikipedia.org/wiki/IEEE_754>.
499
500 ACCURACY AND PRECISION
501 See also: Rounding.
502
503 Math::BigFloat supports both precision (rounding to a certain place
504 before or after the dot) and accuracy (rounding to a certain number of
505 digits). For a full documentation, examples and tips on these topics
506 please see the large section about rounding in Math::BigInt.
507
508 Since things like sqrt(2) or "1 / 3" must presented with a limited
509 accuracy lest a operation consumes all resources, each operation
510 produces no more than the requested number of digits.
511
512 If there is no global precision or accuracy set, and the operation in
513 question was not called with a requested precision or accuracy, and the
514 input $x has no accuracy or precision set, then a fallback parameter
515 will be used. For historical reasons, it is called "div_scale" and can
516 be accessed via:
517
518 $d = Math::BigFloat->div_scale(); # query
519 Math::BigFloat->div_scale($n); # set to $n digits
520
521 The default value for "div_scale" is 40.
522
523 In case the result of one operation has more digits than specified, it
524 is rounded. The rounding mode taken is either the default mode, or the
525 one supplied to the operation after the scale:
526
527 $x = Math::BigFloat->new(2);
528 Math::BigFloat->accuracy(5); # 5 digits max
529 $y = $x->copy()->bdiv(3); # gives 0.66667
530 $y = $x->copy()->bdiv(3,6); # gives 0.666667
531 $y = $x->copy()->bdiv(3,6,undef,'odd'); # gives 0.666667
532 Math::BigFloat->round_mode('zero');
533 $y = $x->copy()->bdiv(3,6); # will also give 0.666667
534
535 Note that "Math::BigFloat->accuracy()" and
536 "Math::BigFloat->precision()" set the global variables, and thus any
537 newly created number will be subject to the global rounding
538 immediately. This means that in the examples above, the 3 as argument
539 to bdiv() will also get an accuracy of 5.
540
541 It is less confusing to either calculate the result fully, and
542 afterwards round it explicitly, or use the additional parameters to the
543 math functions like so:
544
545 use Math::BigFloat;
546 $x = Math::BigFloat->new(2);
547 $y = $x->copy()->bdiv(3);
548 print $y->bround(5),"\n"; # gives 0.66667
549
550 or
551
552 use Math::BigFloat;
553 $x = Math::BigFloat->new(2);
554 $y = $x->copy()->bdiv(3,5); # gives 0.66667
555 print "$y\n";
556
557 Rounding
558 bfround ( +$scale )
559 Rounds to the $scale'th place left from the '.', counting from the
560 dot. The first digit is numbered 1.
561
562 bfround ( -$scale )
563 Rounds to the $scale'th place right from the '.', counting from the
564 dot.
565
566 bfround ( 0 )
567 Rounds to an integer.
568
569 bround ( +$scale )
570 Preserves accuracy to $scale digits from the left (aka significant
571 digits) and pads the rest with zeros. If the number is between 1
572 and -1, the significant digits count from the first non-zero after
573 the '.'
574
575 bround ( -$scale ) and bround ( 0 )
576 These are effectively no-ops.
577
578 All rounding functions take as a second parameter a rounding mode from
579 one of the following: 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or
580 'common'.
581
582 The default rounding mode is 'even'. By using
583 "Math::BigFloat->round_mode($round_mode);" you can get and set the
584 default mode for subsequent rounding. The usage of
585 "$Math::BigFloat::$round_mode" is no longer supported. The second
586 parameter to the round functions then overrides the default
587 temporarily.
588
589 The as_number() function returns a BigInt from a Math::BigFloat. It
590 uses 'trunc' as rounding mode to make it equivalent to:
591
592 $x = 2.5;
593 $y = int($x) + 2;
594
595 You can override this by passing the desired rounding mode as parameter
596 to as_number():
597
598 $x = Math::BigFloat->new(2.5);
599 $y = $x->as_number('odd'); # $y = 3
600
602 After "use Math::BigFloat ':constant'" all numeric literals in the
603 given scope are converted to "Math::BigFloat" objects. This conversion
604 happens at compile time.
605
606 For example,
607
608 perl -MMath::BigFloat=:constant -le 'print 2e-150'
609
610 prints the exact value of 2e-150. Note that without conversion of
611 constants the expression 2e-150 is calculated using Perl scalars, which
612 leads to an inaccuracte result.
613
614 Note that strings are not affected, so that
615
616 use Math::BigFloat qw/:constant/;
617
618 $y = "1234567890123456789012345678901234567890"
619 + "123456789123456789";
620
621 does not give you what you expect. You need an explicit
622 Math::BigFloat->new() around at least one of the operands. You should
623 also quote large constants to prevent loss of precision:
624
625 use Math::BigFloat;
626
627 $x = Math::BigFloat->new("1234567889123456789123456789123456789");
628
629 Without the quotes Perl converts the large number to a floating point
630 constant at compile time, and then converts the result to a
631 Math::BigFloat object at runtime, which results in an inaccurate
632 result.
633
634 Hexadecimal, octal, and binary floating point literals
635 Perl (and this module) accepts hexadecimal, octal, and binary floating
636 point literals, but use them with care with Perl versions before
637 v5.32.0, because some versions of Perl silently give the wrong result.
638 Below are some examples of different ways to write the number decimal
639 314.
640
641 Hexadecimal floating point literals:
642
643 0x1.3ap+8 0X1.3AP+8
644 0x1.3ap8 0X1.3AP8
645 0x13a0p-4 0X13A0P-4
646
647 Octal floating point literals (with "0" prefix):
648
649 01.164p+8 01.164P+8
650 01.164p8 01.164P8
651 011640p-4 011640P-4
652
653 Octal floating point literals (with "0o" prefix) (requires v5.34.0):
654
655 0o1.164p+8 0O1.164P+8
656 0o1.164p8 0O1.164P8
657 0o11640p-4 0O11640P-4
658
659 Binary floating point literals:
660
661 0b1.0011101p+8 0B1.0011101P+8
662 0b1.0011101p8 0B1.0011101P8
663 0b10011101000p-2 0B10011101000P-2
664
665 Math library
666 Math with the numbers is done (by default) by a module called
667 Math::BigInt::Calc. This is equivalent to saying:
668
669 use Math::BigFloat lib => "Calc";
670
671 You can change this by using:
672
673 use Math::BigFloat lib => "GMP";
674
675 Note: General purpose packages should not be explicit about the library
676 to use; let the script author decide which is best.
677
678 Note: The keyword 'lib' will warn when the requested library could not
679 be loaded. To suppress the warning use 'try' instead:
680
681 use Math::BigFloat try => "GMP";
682
683 If your script works with huge numbers and Calc is too slow for them,
684 you can also for the loading of one of these libraries and if none of
685 them can be used, the code will die:
686
687 use Math::BigFloat only => "GMP,Pari";
688
689 The following would first try to find Math::BigInt::Foo, then
690 Math::BigInt::Bar, and when this also fails, revert to
691 Math::BigInt::Calc:
692
693 use Math::BigFloat lib => "Foo,Math::BigInt::Bar";
694
695 See the respective low-level library documentation for further details.
696
697 See Math::BigInt for more details about using a different low-level
698 library.
699
700 Using Math::BigInt::Lite
701 For backwards compatibility reasons it is still possible to request a
702 different storage class for use with Math::BigFloat:
703
704 use Math::BigFloat with => 'Math::BigInt::Lite';
705
706 However, this request is ignored, as the current code now uses the low-
707 level math library for directly storing the number parts.
708
710 "Math::BigFloat" exports nothing by default, but can export the bpi()
711 method:
712
713 use Math::BigFloat qw/bpi/;
714
715 print bpi(10), "\n";
716
718 Do not try to be clever to insert some operations in between switching
719 libraries:
720
721 require Math::BigFloat;
722 my $matter = Math::BigFloat->bone() + 4; # load BigInt and Calc
723 Math::BigFloat->import( lib => 'Pari' ); # load Pari, too
724 my $anti_matter = Math::BigFloat->bone()+4; # now use Pari
725
726 This will create objects with numbers stored in two different backend
727 libraries, and VERY BAD THINGS will happen when you use these together:
728
729 my $flash_and_bang = $matter + $anti_matter; # Don't do this!
730
731 stringify, bstr()
732 Both stringify and bstr() now drop the leading '+'. The old code
733 would return '+1.23', the new returns '1.23'. See the documentation
734 in Math::BigInt for reasoning and details.
735
736 brsft()
737 The following will probably not print what you expect:
738
739 my $c = Math::BigFloat->new('3.14159');
740 print $c->brsft(3,10),"\n"; # prints 0.00314153.1415
741
742 It prints both quotient and remainder, since print calls brsft() in
743 list context. Also, "$c->brsft()" will modify $c, so be careful.
744 You probably want to use
745
746 print scalar $c->copy()->brsft(3,10),"\n";
747 # or if you really want to modify $c
748 print scalar $c->brsft(3,10),"\n";
749
750 instead.
751
752 Modifying and =
753 Beware of:
754
755 $x = Math::BigFloat->new(5);
756 $y = $x;
757
758 It will not do what you think, e.g. making a copy of $x. Instead it
759 just makes a second reference to the same object and stores it in
760 $y. Thus anything that modifies $x will modify $y (except
761 overloaded math operators), and vice versa. See Math::BigInt for
762 details and how to avoid that.
763
764 precision() vs. accuracy()
765 A common pitfall is to use "precision()" when you want to round a
766 result to a certain number of digits:
767
768 use Math::BigFloat;
769
770 Math::BigFloat->precision(4); # does not do what you
771 # think it does
772 my $x = Math::BigFloat->new(12345); # rounds $x to "12000"!
773 print "$x\n"; # print "12000"
774 my $y = Math::BigFloat->new(3); # rounds $y to "0"!
775 print "$y\n"; # print "0"
776 $z = $x / $y; # 12000 / 0 => NaN!
777 print "$z\n";
778 print $z->precision(),"\n"; # 4
779
780 Replacing "precision()" with "accuracy()" is probably not what you
781 want, either:
782
783 use Math::BigFloat;
784
785 Math::BigFloat->accuracy(4); # enables global rounding:
786 my $x = Math::BigFloat->new(123456); # rounded immediately
787 # to "12350"
788 print "$x\n"; # print "123500"
789 my $y = Math::BigFloat->new(3); # rounded to "3
790 print "$y\n"; # print "3"
791 print $z = $x->copy()->bdiv($y),"\n"; # 41170
792 print $z->accuracy(),"\n"; # 4
793
794 What you want to use instead is:
795
796 use Math::BigFloat;
797
798 my $x = Math::BigFloat->new(123456); # no rounding
799 print "$x\n"; # print "123456"
800 my $y = Math::BigFloat->new(3); # no rounding
801 print "$y\n"; # print "3"
802 print $z = $x->copy()->bdiv($y,4),"\n"; # 41150
803 print $z->accuracy(),"\n"; # undef
804
805 In addition to computing what you expected, the last example also
806 does not "taint" the result with an accuracy or precision setting,
807 which would influence any further operation.
808
810 Please report any bugs or feature requests to "bug-math-bigint at
811 rt.cpan.org", or through the web interface at
812 <https://rt.cpan.org/Ticket/Create.html?Queue=Math-BigInt> (requires
813 login). We will be notified, and then you'll automatically be notified
814 of progress on your bug as I make changes.
815
817 You can find documentation for this module with the perldoc command.
818
819 perldoc Math::BigFloat
820
821 You can also look for information at:
822
823 • GitHub
824
825 <https://github.com/pjacklam/p5-Math-BigInt>
826
827 • RT: CPAN's request tracker
828
829 <https://rt.cpan.org/Dist/Display.html?Name=Math-BigInt>
830
831 • MetaCPAN
832
833 <https://metacpan.org/release/Math-BigInt>
834
835 • CPAN Testers Matrix
836
837 <http://matrix.cpantesters.org/?dist=Math-BigInt>
838
840 This program is free software; you may redistribute it and/or modify it
841 under the same terms as Perl itself.
842
844 Math::BigInt and Math::BigInt as well as the backends
845 Math::BigInt::FastCalc, Math::BigInt::GMP, and Math::BigInt::Pari.
846
847 The pragmas bignum, bigint and bigrat.
848
850 • Mark Biggar, overloaded interface by Ilya Zakharevich, 1996-2001.
851
852 • Completely rewritten by Tels <http://bloodgate.com> in 2001-2008.
853
854 • Florian Ragwitz <flora@cpan.org>, 2010.
855
856 • Peter John Acklam <pjacklam@gmail.com>, 2011-.
857
858
859
860perl v5.36.1 2023-07-17 Math::BigFloat(3)