1mlpack_knn(1) General Commands Manual mlpack_knn(1)
2
3
4
6 mlpack_knn - k-nearest-neighbors
7
9 mlpack_knn [-h] [-v]
10
12 This program will calculate the k-nearest-neighbors of a set of points
13 using kd-trees or cover trees (cover tree support is experimental and
14 may be slow). You may specify a separate set of reference points and
15 query points, or just a reference set which will be used as both the
16 reference and query set.
17
18 For example, the following will calculate the 5 nearest neighbors of
19 eachpoint in 'input.csv' and store the distances in 'distances.csv' and
20 the neighbors in the file 'neighbors.csv':
21
22 $ mlpack_knn --k=5 --reference_file=input.csv --distances_file=dis‐
23 tances.csv --neighbors_file=neighbors.csv
24
25 The output files are organized such that row i and column j in the
26 neighbors output file corresponds to the index of the point in the ref‐
27 erence set which is the i'th nearest neighbor from the point in the
28 query set with index j. Row i and column j in the distances output
29 file corresponds to the distance between those two points.
30
32 --algorithm (-a) [string]
33 Type of neighbor search: 'naive', 'single_tree', ’dual_tree',
34 'greedy'. Default value ’dual_tree'.
35
36 --epsilon (-e) [double]
37 If specified, will do approximate nearest neighbor search with
38 given relative error. Default value 0.
39
40 --help (-h)
41 Default help info.
42
43 --info [string]
44 Get help on a specific module or option. Default value ''.
45 --input_model_file (-m) [string] File containing pre-trained kNN
46 model. Default value ''.
47
48 --k (-k) [int]
49 Number of nearest neighbors to find. Default value 0.
50
51 --leaf_size (-l) [int]
52 Leaf size for tree building (used for kd-trees, vp trees, random
53 projection trees, UB trees, R trees, R* trees, X trees, Hilbert
54 R trees, R+ trees, R++ trees, spill trees, and octrees).
55 Default value 20.
56
57 --naive (-N)
58 (Deprecated) If true, O(n^2) naive mode is used for computation.
59 Will be removed in mlpack 3.0.0. Use '--algorithm naive'
60 instead.
61
62 --query_file (-q) [string]
63 File containing query points (optional). Default value ''.
64
65 --random_basis (-R)
66 Before tree-building, project the data onto a random orthogonal
67 basis. --reference_file (-r) [string] File containing the ref‐
68 erence dataset. Default value ''.
69
70 --rho (-b) [double]
71 Balance threshold (only valid for spill trees). Default value
72 0.7.
73
74 --seed (-s) [int]
75 Random seed (if 0, std::time(NULL) is used). Default value 0.
76
77 --single_mode (-S)
78 (Deprecated) If true, single-tree search is used (as opposed to
79 dual-tree search). Will be removed in mlpack 3.0.0. Use '--algo‐
80 rithm single_tree' instead.
81
82 --tau (-u) [double]
83 Overlapping size (only valid for spill trees). Default value 0.
84
85 --tree_type (-t) [string]
86 Type of tree to use: 'kd', 'vp', 'rp', 'max-rp', ’ub', 'cover',
87 'r', 'r-star', 'x', 'ball', ’hilbert-r', 'r-plus', 'r-plus-
88 plus', 'spill', ’oct'. Default value 'kd'. --true_dis‐
89 tances_file (-D) [string] File of true distances to compute the
90 effective error (average relative error) (it is printed when -v
91 is specified). Default value ''. --true_neighbors_file (-T)
92 [string] File of true neighbors to compute the recall (it is
93 printed when -v is specified). Default value ’'.
94
95 --verbose (-v)
96 Display informational messages and the full list of parameters
97 and timers at the end of execution.
98
99 --version (-V)
100 Display the version of mlpack.
101
103 --distances_file (-d) [string] File to output distances into. Default
104 value ’'. --neighbors_file (-n) [string] File to output neighbors
105 into. Default value ’'. --output_model_file (-M) [string] If speci‐
106 fied, the kNN model will be saved to the given file. Default value ''.
107
110 For further information, including relevant papers, citations, and the‐
111 ory, For further information, including relevant papers, citations, and
112 theory, consult the documentation found at http://www.mlpack.org or
113 included with your consult the documentation found at
114 http://www.mlpack.org or included with your DISTRIBUTION OF MLPACK.
115 DISTRIBUTION OF MLPACK.
116
117
118
119 mlpack_knn(1)