1i.pansharpen(1)               Grass User's Manual              i.pansharpen(1)
2
3
4

NAME

6       i.pansharpen   -  Image fusion algorithms to sharpen multispectral with
7       high-res panchromatic channels
8

KEYWORDS

10       imagery, fusion, sharpen, Brovey, IHS, HIS, PCA
11

SYNOPSIS

13       i.pansharpen
14       i.pansharpen --help
15       i.pansharpen [-sl] red=name green=name blue=name pan=name  output=base‐
16       name  method=string   [--overwrite]   [--help]   [--verbose]  [--quiet]
17       [--ui]
18
19   Flags:
20       -s
21           Serial processing rather than parallel processing
22
23       -l
24           Rebalance blue channel for LANDSAT
25
26       --overwrite
27           Allow output files to overwrite existing files
28
29       --help
30           Print usage summary
31
32       --verbose
33           Verbose module output
34
35       --quiet
36           Quiet module output
37
38       --ui
39           Force launching GUI dialog
40
41   Parameters:
42       red=name [required]
43           Name of raster map to be used for <red>
44
45       green=name [required]
46           Name of raster map to be used for <green>
47
48       blue=name [required]
49           Name of raster map to be used for <blue>
50
51       pan=name [required]
52           Name of raster map to be  used  for  high  resolution  panchromatic
53           channel
54
55       output=basename [required]
56           Name for output basename raster map(s)
57
58       method=string [required]
59           Method for pan sharpening
60           Options: brovey, ihs, pca
61           Default: ihs
62

DESCRIPTION

64       i.pansharpen uses a high resolution panchromatic band from a multispec‐
65       tral image to sharpen 3 lower resolution bands. The 3 lower  resolution
66       bands  can  then  be combined into an RGB color image at a higher (more
67       detailed) resolution than is possible using the original 3  bands.  For
68       example,  Landsat  ETM  has  low  resolution spectral bands 1 (blue), 2
69       (green), 3 (red), 4 (near IR), 5 (mid-IR), and 7 (mid-IR) at 30m  reso‐
70       lution,  and  a  high resolution panchromatic band 8 at 15m resolution.
71       Pan sharpening allows bands 3-2-1 (or other combinations of 30m resolu‐
72       tion  bands  like  4-3-2 or 5-4-2) to be combined into a 15m resolution
73       color image.
74       i.pansharpen offers a choice of three different ’pan sharpening’  algo‐
75       rithms: IHS, Brovey, and PCA.
76       For IHS pan sharpening, the original 3 lower resolution bands, selected
77       as red, green and blue channels for creating an  RGB  composite  image,
78       are  transformed into IHS (intensity, hue, and saturation) color space.
79       The panchromatic band is then substituted  for  the  intensity  channel
80       (I),  combined  with  the original hue (H) and saturation (S) channels,
81       and transformed back to RGB color space at the higher resolution of the
82       panchromatic band. The algorithm for this can be represented as: RGB ->
83       IHS -> [pan]HS -> RGB.
84       With a Brovey pan sharpening, each of the 3 lower resolution bands  and
85       panchromatic  band are combined using the following algorithm to calcu‐
86       late 3 new bands at the higher resolution (example for band 1):
87                                band1
88           new band1 = ----------------------- * panband
89                        band1 + band2 + band3
90       In PCA pan sharpening, a principal component analysis is  performed  on
91       the  original  3 lower resolution bands to create 3 principal component
92       images (PC1, PC2, and PC3) and their associated eigenvectors (EV), such
93       that:
94            band1  band2  band3
95       PC1: EV1-1  EV1-2  EV1-3
96       PC2: EV2-1  EV2-2  EV2-3
97       PC3: EV3-1  EV3-2  EV3-3
98       and
99       PC1 = EV1-1 * band1 + EV1-2 * band2 + EV1-3 * band3 - mean(bands 1,2,3)
100       An  inverse  PCA  is then performed, substituting the panchromatic band
101       for PC1.  To do this, the eigenvectors matrix is inverted (in this case
102       transposed),  the PC images are multiplied by the eigenvectors with the
103       panchromatic band substituted for PC1, and mean of each band  is  added
104       to  each  transformed image band using the following algorithm (example
105       for band 1):
106       band1’ = pan * EV1-1 + PC2 * EV2-1 + PC3 * EV3-1 + mean(band1)
107       The assignment of the channels depends on the  satellite.  Examples  of
108       satellite  imagery  with  high resolution panchromatic bands, and lower
109       resolution spectral bands include Landsat 7 ETM, QuickBird, and SPOT.
110

NOTES

112       The module currently only works for 8-bit images.
113       The command temporarily changes the computational region  to  the  high
114       resolution  of  the  panchromatic  band during sharpening calculations,
115       then restores the previous region settings. The current region  coordi‐
116       nates (and null values) are respected. The high resolution panchromatic
117       image is histogram matched to the band it is replaces prior to  substi‐
118       tution  (i.e.,  the  intensity  channel for IHS sharpening, the low res
119       band selected for each color channel with Brovey  sharpening,  and  the
120       PC1 image for PCA sharpening).
121       By  default,  the  command  will attempt to employ parallel processing,
122       using up to 3 cores simultaneously. The -s flag will  disable  parallel
123       processing,  but  does  use an optimized r.mapcalc expression to reduce
124       disk I/O.
125       The three pan-sharpened output channels may be combined with  d.rgb  or
126       r.composite.  Colors may be optionally optimized with i.colors.enhance.
127       While the resulting color image will be at the higher resolution in all
128       cases,  the  3  pan  sharpening  algorithms differ in terms of spectral
129       response.
130

EXAMPLES

132   Pan sharpening comparison example
133       Pan sharpening of a Landsat image from Boulder, Colorado, USA:
134       # R, G, B composite at 30m
135       g.region raster=p034r032_7dt20010924_z13_10 -p
136       d.rgb b=p034r032_7dt20010924_z13_10 g=lp034r032_7dt20010924_z13_20
137           r=p034r032_7dt20010924_z13_30
138       # i.pansharpen with IHS algorithm
139       i.pansharpen red=p034r032_7dt20010924_z13_30 green=p034r032_7dt20010924_z13_20
140           blue=p034r032_7dt20010924_z13_10 pan=p034r032_7dp20010924_z13_80
141           output=ihs321 method=ihs
142       # ... likewise with method=brovey and method=pca
143       # display at 15m
144       g.region raster=ihs321_blue -p
145       d.rgb b=ihs321_blue g=ihs321_green r=ihs321_red
146
147       Results:
148
149       R, G, B composite of Landsat at 30m                          R, G, B composite of Brovey sharpened image at 15m
150
151       R, G, B composite of IHS sharpened image at 15m              R, G, B composite of PCA sharpened image at 15m"
152
153
154   Pan sharpening of LANDSAT ETM+ (Landsat 7)
155       LANDSAT ETM+ (Landsat 7), North Carolina sample dataset:
156       # original at 28m
157       g.region raster=lsat7_2002_10 -p
158       d.mon wx0
159       d.rgb b=lsat7_2002_10 g=lsat7_2002_20 r=lsat7_2002_30
160       # i.pansharpen with IHS algorithm
161       i.pansharpen red=lsat7_2002_30@PERMANENT \
162         green=lsat7_2002_20 blue=lsat7_2002_10 \
163         pan=lsat7_2002_80 method=ihs \
164         output=lsat7_2002_ihs
165       # display at 14.25m
166       g.region raster=lsat7_2002_ihs_red -p
167       d.erase
168       d.rgb r=lsat7_2002_ihs_red g=lsat7_2002_ihs_green b=lsat7_2002_ihs_blue
169       # compare before/after (RGB support in "Advanced"):
170       g.gui.mapswipe
171       # optionally color balancing:
172       i.colors.enhance r=lsat7_2002_ihs_red g=lsat7_2002_ihs_green b=lsat7_2002_ihs_blue
173

SEE ALSO

175        i.his.rgb, i.rgb.his, i.pca, d.rgb, r.composite
176

REFERENCES

178           ·   Original Brovey formula reference unknown, probably...
179               Roller, N.E.G. and Cox, S., (1980). Comparison of  Landsat  MSS
180               and  merged  MSS/RBV  data  for analysis of natural vegetation.
181               Proc. of the 14th International Symposium on Remote Sensing  of
182               Environment, San Jose, Costa Rica, 23-30 April, pp. 1001-1007
183
184           ·   Amarsaikhan,  D.,  Douglas,  T.  (2004). Data fusion and multi‐
185               source image classification. International  Journal  of  Remote
186               Sensing, 25(17), 3529-3539.
187
188           ·   Behnia,  P.  (2005).  Comparison  between four methods for data
189               fusion of ETM+ multispectral and pan images. Geo-spatial Infor‐
190               mation Science, 8(2), 98-103.
191
192           ·   Du,  Q.,  Younan,  N.  H., King, R., Shah, V. P. (2007). On the
193               Performance Evaluation of Pan-Sharpening Techniques. Geoscience
194               and Remote Sensing Letters, IEEE, 4(4), 518-522.
195
196           ·   Karathanassi,  V., Kolokousis, P., Ioannidou, S. (2007). A com‐
197               parison study on fusion methods  using  evaluation  indicators.
198               International Journal of Remote Sensing, 28(10), 2309-2341.
199
200           ·   Neteler,  M, D. Grasso, I. Michelazzi, L. Miori, S. Merler, and
201               C.  Furlanello (2005). An integrated toolbox for  image  regis‐
202               tration,  fusion  and  classification. International Journal of
203               Geoinformatics, 1(1):51-61 (PDF)
204
205           ·   Pohl, C, and J.L van Genderen (1998). Multisensor image  fusion
206               in  remote  sensing: concepts, methods and application. Int. J.
207               of Rem. Sens., 19, 823-854.
208

AUTHORS

210       Michael Barton (Arizona State University, USA)
211       with  contributions  from  Markus  Neteler  (ITC-irst,  Italy);   Glynn
212       Clements;  Luca  Delucchi (Fondazione E. Mach, Italy); Markus Metz; and
213       Hamish Bowman.
214
215       Last changed: $Date: 2018-03-02 23:10:41 +0100 (Fri, 02 Mar 2018) $
216

SOURCE CODE

218       Available at: i.pansharpen source code (history)
219
220       Main index | Imagery index | Topics index | Keywords index |  Graphical
221       index | Full index
222
223       © 2003-2019 GRASS Development Team, GRASS GIS 7.6.0 Reference Manual
224
225
226
227GRASS 7.6.0                                                    i.pansharpen(1)
Impressum