1i.pansharpen(1)               Grass User's Manual              i.pansharpen(1)
2
3
4

NAME

6       i.pansharpen   -  Image fusion algorithms to sharpen multispectral with
7       high-res panchromatic channels
8

KEYWORDS

10       imagery, fusion, sharpen, Brovey, IHS, HIS, PCA
11

SYNOPSIS

13       i.pansharpen
14       i.pansharpen --help
15       i.pansharpen [-slr] red=name green=name blue=name pan=name output=base‐
16       name  method=string  bitdepth=integer  [--overwrite]  [--help]  [--ver‐
17       bose]  [--quiet]  [--ui]
18
19   Flags:
20       -s
21           Serial processing rather than parallel processing
22
23       -l
24           Rebalance blue channel for LANDSAT
25
26       -r
27           Rescale (stretch) the range of pixel values in each channel to  the
28           entire 0-255 8-bit range for processing (see notes)
29
30       --overwrite
31           Allow output files to overwrite existing files
32
33       --help
34           Print usage summary
35
36       --verbose
37           Verbose module output
38
39       --quiet
40           Quiet module output
41
42       --ui
43           Force launching GUI dialog
44
45   Parameters:
46       red=name [required]
47           Name of raster map to be used for <red>
48
49       green=name [required]
50           Name of raster map to be used for <green>
51
52       blue=name [required]
53           Name of raster map to be used for <blue>
54
55       pan=name [required]
56           Name  of  raster  map  to  be used for high resolution panchromatic
57           channel
58
59       output=basename [required]
60           Name for output basename raster map(s)
61
62       method=string [required]
63           Method for pan sharpening
64           Options: brovey, ihs, pca
65           Default: ihs
66
67       bitdepth=integer [required]
68           Bit depth of image (must be in range of 2-30)
69           Options: 2-32
70           Default: 8
71

DESCRIPTION

73       i.pansharpen uses a high resolution panchromatic band from a multispec‐
74       tral  image to sharpen 3 lower resolution bands. The 3 lower resolution
75       bands can then be combined into an RGB color image at  a  higher  (more
76       detailed)  resolution  than is possible using the original 3 bands. For
77       example, Landsat ETM has low resolution  spectral  bands  1  (blue),  2
78       (green),  3 (red), 4 (near IR), 5 (mid-IR), and 7 (mid-IR) at 30m reso‐
79       lution, and a high resolution panchromatic band 8  at  15m  resolution.
80       Pan sharpening allows bands 3-2-1 (or other combinations of 30m resolu‐
81       tion bands like 4-3-2 or 5-4-2) to be combined into  a  15m  resolution
82       color image.
83       i.pansharpen  offers a choice of three different ’pan sharpening’ algo‐
84       rithms: IHS, Brovey, and PCA.
85       For IHS pan sharpening, the original 3 lower resolution bands, selected
86       as  red,  green  and blue channels for creating an RGB composite image,
87       are transformed into IHS (intensity, hue, and saturation) color  space.
88       The  panchromatic  band  is  then substituted for the intensity channel
89       (I), combined with the original hue (H) and  saturation  (S)  channels,
90       and transformed back to RGB color space at the higher resolution of the
91       panchromatic band. The algorithm for this can be represented as: RGB ->
92       IHS -> [pan]HS -> RGB.
93       With  a Brovey pan sharpening, each of the 3 lower resolution bands and
94       panchromatic band are combined using the following algorithm to  calcu‐
95       late 3 new bands at the higher resolution (example for band 1):
96                                band1
97           new band1 = ----------------------- * panband
98                        band1 + band2 + band3
99       In  PCA  pan sharpening, a principal component analysis is performed on
100       the original 3 lower resolution bands to create 3  principal  component
101       images (PC1, PC2, and PC3) and their associated eigenvectors (EV), such
102       that:
103            band1  band2  band3
104       PC1: EV1-1  EV1-2  EV1-3
105       PC2: EV2-1  EV2-2  EV2-3
106       PC3: EV3-1  EV3-2  EV3-3
107       and
108       PC1 = EV1-1 * band1 + EV1-2 * band2 + EV1-3 * band3 - mean(bands 1,2,3)
109       An inverse PCA is then performed, substituting  the  panchromatic  band
110       for PC1.  To do this, the eigenvectors matrix is inverted (in this case
111       transposed), the PC images are multiplied by the eigenvectors with  the
112       panchromatic  band  substituted for PC1, and mean of each band is added
113       to each transformed image band using the following  algorithm  (example
114       for band 1):
115       band1 = pan * EV1-1 + PC2 * EV1-2 + PC3 * EV1-3 + mean(band1)
116       The  assignment  of  the channels depends on the satellite. Examples of
117       satellite imagery with high resolution panchromatic  bands,  and  lower
118       resolution spectral bands include Landsat 7 ETM, QuickBird, and SPOT.
119

NOTES

121       The module works for 2-bit to 30-bit images. All images are rescaled to
122       8-bit for processing. By default, the entire  possible  range  for  the
123       selected  bit  depth  is  rescaled  to 8-bit. For example, the range of
124       0-65535 for a 16-bit image is rescaled to 0-255). The ’r’  flag  allows
125       the  range  of  pixel values actually present in an image rescaled to a
126       full 8-bit range. For example, a 16 bit image might  only  have  pixels
127       that  range  from 70 to 35000; this range of 70-35000 would be rescaled
128       to 0-255. This can give better visual distinction  to  features,  espe‐
129       cially when the range of actual values in an image only occupies a rel‐
130       atively limited portion of the possible range.
131       i.pansharpen temporarily changes the computational region to  the  high
132       resolution  of  the  panchromatic  band during sharpening calculations,
133       then restores the previous region settings. The current region  coordi‐
134       nates (and null values) are respected. The high resolution panchromatic
135       image is histogram matched to the band it is replaces prior to  substi‐
136       tution  (i.e.,  the  intensity  channel for IHS sharpening, the low res
137       band selected for each color channel with Brovey  sharpening,  and  the
138       PC1 image for PCA sharpening).
139       By  default,  the  command  will attempt to employ parallel processing,
140       using up to 3 cores simultaneously. The -s flag will  disable  parallel
141       processing,  but  does  use an optimized r.mapcalc expression to reduce
142       disk I/O.
143       The three pan-sharpened output channels may be combined with  d.rgb  or
144       r.composite.  Colors may be optionally optimized with i.colors.enhance.
145       While the resulting color image will be at the higher resolution in all
146       cases,  the  3  pan  sharpening  algorithms differ in terms of spectral
147       response.
148

EXAMPLES

150   Pan sharpening comparison example
151       Pan sharpening of a Landsat image from Boulder, Colorado, USA  (LANDSAT
152       ETM+ [Landsat 7] spectral bands 5,4,2, and pan band 8):
153       # R, G, B composite at 30m
154       g.region raster=p034r032_7dt20010924_z13_20 -p
155       d.rgb b=p034r032_7dt20010924_z13_20 g=lp034r032_7dt20010924_z13_40
156           r=p034r032_7dt20010924_z13_50
157       # i.pansharpen with IHS algorithm
158       i.pansharpen red=p034r032_7dt20010924_z13_50 green=p034r032_7dt20010924_z13_40
159           blue=p034r032_7dt20010924_z13_20 pan=p034r032_7dp20010924_z13_80
160           output=ihs321 method=ihs
161       # ... likewise with method=brovey and method=pca
162       # display at 15m
163       g.region raster=ihs542_blue -p
164       d.rgb b=ihs542_blue g=ihs542_green r=ihs542_red
165
166       Results:
167
168         R, G, B composite of Landsat at 30m                         R, G, B composite of Brovey sharpened image at 15m
169
170         R, G, B composite of IHS sharpened image at 15m             R, G, B composite of PCA sharpened image at 15m"
171
172
173   Pan sharpening of LANDSAT ETM+ (Landsat 7)
174       LANDSAT ETM+ (Landsat 7), North Carolina sample dataset:
175       # original at 28m
176       g.region raster=lsat7_2002_10 -p
177       d.mon wx0
178       d.rgb b=lsat7_2002_10 g=lsat7_2002_20 r=lsat7_2002_30
179       # i.pansharpen with IHS algorithm
180       i.pansharpen red=lsat7_2002_30@PERMANENT \
181         green=lsat7_2002_20 blue=lsat7_2002_10 \
182         pan=lsat7_2002_80 method=ihs \
183         output=lsat7_2002_ihs
184       # display at 14.25m
185       g.region raster=lsat7_2002_ihs_red -p
186       d.erase
187       d.rgb r=lsat7_2002_ihs_red g=lsat7_2002_ihs_green b=lsat7_2002_ihs_blue
188       # compare before/after (RGB support in "Advanced"):
189       g.gui.mapswipe
190       # optionally color balancing:
191       i.colors.enhance r=lsat7_2002_ihs_red g=lsat7_2002_ihs_green b=lsat7_2002_ihs_blue
192

SEE ALSO

194        i.his.rgb, i.rgb.his, i.pca, d.rgb, r.composite
195

REFERENCES

197           ·   Original Brovey formula reference unknown, probably...
198               Roller,  N.E.G.  and Cox, S., (1980). Comparison of Landsat MSS
199               and merged MSS/RBV data for  analysis  of  natural  vegetation.
200               Proc.  of the 14th International Symposium on Remote Sensing of
201               Environment, San Jose, Costa Rica, 23-30 April, pp. 1001-1007
202
203           ·   Amarsaikhan, D., Douglas, T. (2004).  Data  fusion  and  multi‐
204               source  image  classification.  International Journal of Remote
205               Sensing, 25(17), 3529-3539.
206
207           ·   Behnia, P. (2005). Comparison between  four  methods  for  data
208               fusion of ETM+ multispectral and pan images. Geo-spatial Infor‐
209               mation Science, 8(2), 98-103.
210
211           ·   Du, Q., Younan, N. H., King, R., Shah, V.  P.  (2007).  On  the
212               Performance Evaluation of Pan-Sharpening Techniques. Geoscience
213               and Remote Sensing Letters, IEEE, 4(4), 518-522.
214
215           ·   Karathanassi, V., Kolokousis, P., Ioannidou, S. (2007). A  com‐
216               parison  study  on  fusion methods using evaluation indicators.
217               International Journal of Remote Sensing, 28(10), 2309-2341.
218
219           ·   Neteler, M, D. Grasso, I. Michelazzi, L. Miori, S. Merler,  and
220               C.   Furlanello  (2005). An integrated toolbox for image regis‐
221               tration, fusion and classification.  International  Journal  of
222               Geoinformatics, 1(1):51-61 (PDF)
223
224           ·   Pohl,  C, and J.L van Genderen (1998). Multisensor image fusion
225               in remote sensing: concepts, methods and application.  Int.  J.
226               of Rem. Sens., 19, 823-854.
227

AUTHORS

229       Michael Barton (Arizona State University, USA)
230       with   contributions  from  Markus  Neteler  (ITC-irst,  Italy);  Glynn
231       Clements; Luca Delucchi (Fondazione E. Mach, Italy); Markus  Metz;  and
232       Hamish Bowman.
233

SOURCE CODE

235       Available at: i.pansharpen source code (history)
236
237       Main  index | Imagery index | Topics index | Keywords index | Graphical
238       index | Full index
239
240       © 2003-2019 GRASS Development Team, GRASS GIS 7.8.2 Reference Manual
241
242
243
244GRASS 7.8.2                                                    i.pansharpen(1)
Impressum