1PGBENCH(1)               PostgreSQL 11.3 Documentation              PGBENCH(1)
2
3
4

NAME

6       pgbench - run a benchmark test on PostgreSQL
7

SYNOPSIS

9       pgbench -i [option...] [dbname]
10
11       pgbench [option...] [dbname]
12

DESCRIPTION

14       pgbench is a simple program for running benchmark tests on PostgreSQL.
15       It runs the same sequence of SQL commands over and over, possibly in
16       multiple concurrent database sessions, and then calculates the average
17       transaction rate (transactions per second). By default, pgbench tests a
18       scenario that is loosely based on TPC-B, involving five SELECT, UPDATE,
19       and INSERT commands per transaction. However, it is easy to test other
20       cases by writing your own transaction script files.
21
22       Typical output from pgbench looks like:
23
24           transaction type: <builtin: TPC-B (sort of)>
25           scaling factor: 10
26           query mode: simple
27           number of clients: 10
28           number of threads: 1
29           number of transactions per client: 1000
30           number of transactions actually processed: 10000/10000
31           tps = 85.184871 (including connections establishing)
32           tps = 85.296346 (excluding connections establishing)
33
34       The first six lines report some of the most important parameter
35       settings. The next line reports the number of transactions completed
36       and intended (the latter being just the product of number of clients
37       and number of transactions per client); these will be equal unless the
38       run failed before completion. (In -T mode, only the actual number of
39       transactions is printed.) The last two lines report the number of
40       transactions per second, figured with and without counting the time to
41       start database sessions.
42
43       The default TPC-B-like transaction test requires specific tables to be
44       set up beforehand.  pgbench should be invoked with the -i (initialize)
45       option to create and populate these tables. (When you are testing a
46       custom script, you don't need this step, but will instead need to do
47       whatever setup your test needs.) Initialization looks like:
48
49           pgbench -i [ other-options ] dbname
50
51       where dbname is the name of the already-created database to test in.
52       (You may also need -h, -p, and/or -U options to specify how to connect
53       to the database server.)
54
55           Caution
56           pgbench -i creates four tables pgbench_accounts, pgbench_branches,
57           pgbench_history, and pgbench_tellers, destroying any existing
58           tables of these names. Be very careful to use another database if
59           you have tables having these names!
60
61       At the default “scale factor” of 1, the tables initially contain this
62       many rows:
63
64           table                   # of rows
65           ---------------------------------
66           pgbench_branches        1
67           pgbench_tellers         10
68           pgbench_accounts        100000
69           pgbench_history         0
70
71       You can (and, for most purposes, probably should) increase the number
72       of rows by using the -s (scale factor) option. The -F (fillfactor)
73       option might also be used at this point.
74
75       Once you have done the necessary setup, you can run your benchmark with
76       a command that doesn't include -i, that is
77
78           pgbench [ options ] dbname
79
80       In nearly all cases, you'll need some options to make a useful test.
81       The most important options are -c (number of clients), -t (number of
82       transactions), -T (time limit), and -f (specify a custom script file).
83       See below for a full list.
84

OPTIONS

86       The following is divided into three subsections. Different options are
87       used during database initialization and while running benchmarks, but
88       some options are useful in both cases.
89
90   Initialization Options
91       pgbench accepts the following command-line initialization arguments:
92
93       -i
94       --initialize
95           Required to invoke initialization mode.
96
97       -I init_steps
98       --init-steps=init_steps
99           Perform just a selected set of the normal initialization steps.
100           init_steps specifies the initialization steps to be performed,
101           using one character per step. Each step is invoked in the specified
102           order. The default is dtgvp. The available steps are:
103
104           d (Drop)
105               Drop any existing pgbench tables.
106
107           t (create Tables)
108               Create the tables used by the standard pgbench scenario, namely
109               pgbench_accounts, pgbench_branches, pgbench_history, and
110               pgbench_tellers.
111
112           g (Generate data)
113               Generate data and load it into the standard tables, replacing
114               any data already present.
115
116           v (Vacuum)
117               Invoke VACUUM on the standard tables.
118
119           p (create Primary keys)
120               Create primary key indexes on the standard tables.
121
122           f (create Foreign keys)
123               Create foreign key constraints between the standard tables.
124               (Note that this step is not performed by default.)
125
126
127       -F fillfactor
128       --fillfactor=fillfactor
129           Create the pgbench_accounts, pgbench_tellers and pgbench_branches
130           tables with the given fillfactor. Default is 100.
131
132       -n
133       --no-vacuum
134           Perform no vacuuming during initialization. (This option suppresses
135           the v initialization step, even if it was specified in -I.)
136
137       -q
138       --quiet
139           Switch logging to quiet mode, producing only one progress message
140           per 5 seconds. The default logging prints one message each 100000
141           rows, which often outputs many lines per second (especially on good
142           hardware).
143
144       -s scale_factor
145       --scale=scale_factor
146           Multiply the number of rows generated by the scale factor. For
147           example, -s 100 will create 10,000,000 rows in the pgbench_accounts
148           table. Default is 1. When the scale is 20,000 or larger, the
149           columns used to hold account identifiers (aid columns) will switch
150           to using larger integers (bigint), in order to be big enough to
151           hold the range of account identifiers.
152
153       --foreign-keys
154           Create foreign key constraints between the standard tables. (This
155           option adds the f step to the initialization step sequence, if it
156           is not already present.)
157
158       --index-tablespace=index_tablespace
159           Create indexes in the specified tablespace, rather than the default
160           tablespace.
161
162       --tablespace=tablespace
163           Create tables in the specified tablespace, rather than the default
164           tablespace.
165
166       --unlogged-tables
167           Create all tables as unlogged tables, rather than permanent tables.
168
169   Benchmarking Options
170       pgbench accepts the following command-line benchmarking arguments:
171
172       -b scriptname[@weight]
173       --builtin=scriptname[@weight]
174           Add the specified built-in script to the list of executed scripts.
175           An optional integer weight after @ allows to adjust the probability
176           of drawing the script. If not specified, it is set to 1. Available
177           built-in scripts are: tpcb-like, simple-update and select-only.
178           Unambiguous prefixes of built-in names are accepted. With special
179           name list, show the list of built-in scripts and exit immediately.
180
181       -c clients
182       --client=clients
183           Number of clients simulated, that is, number of concurrent database
184           sessions. Default is 1.
185
186       -C
187       --connect
188           Establish a new connection for each transaction, rather than doing
189           it just once per client session. This is useful to measure the
190           connection overhead.
191
192       -d
193       --debug
194           Print debugging output.
195
196       -D varname=value
197       --define=varname=value
198           Define a variable for use by a custom script (see below). Multiple
199           -D options are allowed.
200
201       -f filename[@weight]
202       --file=filename[@weight]
203           Add a transaction script read from filename to the list of executed
204           scripts. An optional integer weight after @ allows to adjust the
205           probability of drawing the test. See below for details.
206
207       -j threads
208       --jobs=threads
209           Number of worker threads within pgbench. Using more than one thread
210           can be helpful on multi-CPU machines. Clients are distributed as
211           evenly as possible among available threads. Default is 1.
212
213       -l
214       --log
215           Write information about each transaction to a log file. See below
216           for details.
217
218       -L limit
219       --latency-limit=limit
220           Transaction which last more than limit milliseconds are counted and
221           reported separately, as late.
222
223           When throttling is used (--rate=...), transactions that lag behind
224           schedule by more than limit ms, and thus have no hope of meeting
225           the latency limit, are not sent to the server at all. They are
226           counted and reported separately as skipped.
227
228       -M querymode
229       --protocol=querymode
230           Protocol to use for submitting queries to the server:
231
232           ·   simple: use simple query protocol.
233
234           ·   extended: use extended query protocol.
235
236           ·   prepared: use extended query protocol with prepared statements.
237
238           The default is simple query protocol. (See Chapter 53 for more
239           information.)
240
241       -n
242       --no-vacuum
243           Perform no vacuuming before running the test. This option is
244           necessary if you are running a custom test scenario that does not
245           include the standard tables pgbench_accounts, pgbench_branches,
246           pgbench_history, and pgbench_tellers.
247
248       -N
249       --skip-some-updates
250           Run built-in simple-update script. Shorthand for -b simple-update.
251
252       -P sec
253       --progress=sec
254           Show progress report every sec seconds. The report includes the
255           time since the beginning of the run, the TPS since the last report,
256           and the transaction latency average and standard deviation since
257           the last report. Under throttling (-R), the latency is computed
258           with respect to the transaction scheduled start time, not the
259           actual transaction beginning time, thus it also includes the
260           average schedule lag time.
261
262       -r
263       --report-latencies
264           Report the average per-statement latency (execution time from the
265           perspective of the client) of each command after the benchmark
266           finishes. See below for details.
267
268       -R rate
269       --rate=rate
270           Execute transactions targeting the specified rate instead of
271           running as fast as possible (the default). The rate is given in
272           transactions per second. If the targeted rate is above the maximum
273           possible rate, the rate limit won't impact the results.
274
275           The rate is targeted by starting transactions along a
276           Poisson-distributed schedule time line. The expected start time
277           schedule moves forward based on when the client first started, not
278           when the previous transaction ended. That approach means that when
279           transactions go past their original scheduled end time, it is
280           possible for later ones to catch up again.
281
282           When throttling is active, the transaction latency reported at the
283           end of the run is calculated from the scheduled start times, so it
284           includes the time each transaction had to wait for the previous
285           transaction to finish. The wait time is called the schedule lag
286           time, and its average and maximum are also reported separately. The
287           transaction latency with respect to the actual transaction start
288           time, i.e. the time spent executing the transaction in the
289           database, can be computed by subtracting the schedule lag time from
290           the reported latency.
291
292           If --latency-limit is used together with --rate, a transaction can
293           lag behind so much that it is already over the latency limit when
294           the previous transaction ends, because the latency is calculated
295           from the scheduled start time. Such transactions are not sent to
296           the server, but are skipped altogether and counted separately.
297
298           A high schedule lag time is an indication that the system cannot
299           process transactions at the specified rate, with the chosen number
300           of clients and threads. When the average transaction execution time
301           is longer than the scheduled interval between each transaction,
302           each successive transaction will fall further behind, and the
303           schedule lag time will keep increasing the longer the test run is.
304           When that happens, you will have to reduce the specified
305           transaction rate.
306
307       -s scale_factor
308       --scale=scale_factor
309           Report the specified scale factor in pgbench's output. With the
310           built-in tests, this is not necessary; the correct scale factor
311           will be detected by counting the number of rows in the
312           pgbench_branches table. However, when testing only custom
313           benchmarks (-f option), the scale factor will be reported as 1
314           unless this option is used.
315
316       -S
317       --select-only
318           Run built-in select-only script. Shorthand for -b select-only.
319
320       -t transactions
321       --transactions=transactions
322           Number of transactions each client runs. Default is 10.
323
324       -T seconds
325       --time=seconds
326           Run the test for this many seconds, rather than a fixed number of
327           transactions per client.  -t and -T are mutually exclusive.
328
329       -v
330       --vacuum-all
331           Vacuum all four standard tables before running the test. With
332           neither -n nor -v, pgbench will vacuum the pgbench_tellers and
333           pgbench_branches tables, and will truncate pgbench_history.
334
335       --aggregate-interval=seconds
336           Length of aggregation interval (in seconds). May be used only with
337           -l option. With this option, the log contains per-interval summary
338           data, as described below.
339
340       --log-prefix=prefix
341           Set the filename prefix for the log files created by --log. The
342           default is pgbench_log.
343
344       --progress-timestamp
345           When showing progress (option -P), use a timestamp (Unix epoch)
346           instead of the number of seconds since the beginning of the run.
347           The unit is in seconds, with millisecond precision after the dot.
348           This helps compare logs generated by various tools.
349
350       --random-seed=SEED
351           Set random generator seed. Seeds the system random number
352           generator, which then produces a sequence of initial generator
353           states, one for each thread. Values for SEED may be: time (the
354           default, the seed is based on the current time), rand (use a strong
355           random source, failing if none is available), or an unsigned
356           decimal integer value. The random generator is invoked explicitly
357           from a pgbench script (random...  functions) or implicitly (for
358           instance option --rate uses it to schedule transactions). When
359           explicitly set, the value used for seeding is shown on the
360           terminal. Any value allowed for SEED may also be provided through
361           the environment variable PGBENCH_RANDOM_SEED. To ensure that the
362           provided seed impacts all possible uses, put this option first or
363           use the environment variable.
364
365           Setting the seed explicitly allows to reproduce a pgbench run
366           exactly, as far as random numbers are concerned. As the random
367           state is managed per thread, this means the exact same pgbench run
368           for an identical invocation if there is one client per thread and
369           there are no external or data dependencies. From a statistical
370           viewpoint reproducing runs exactly is a bad idea because it can
371           hide the performance variability or improve performance unduly,
372           e.g. by hitting the same pages as a previous run. However, it may
373           also be of great help for debugging, for instance re-running a
374           tricky case which leads to an error. Use wisely.
375
376       --sampling-rate=rate
377           Sampling rate, used when writing data into the log, to reduce the
378           amount of log generated. If this option is given, only the
379           specified fraction of transactions are logged. 1.0 means all
380           transactions will be logged, 0.05 means only 5% of the transactions
381           will be logged.
382
383           Remember to take the sampling rate into account when processing the
384           log file. For example, when computing TPS values, you need to
385           multiply the numbers accordingly (e.g. with 0.01 sample rate,
386           you'll only get 1/100 of the actual TPS).
387
388   Common Options
389       pgbench accepts the following command-line common arguments:
390
391       -h hostname
392       --host=hostname
393           The database server's host name
394
395       -p port
396       --port=port
397           The database server's port number
398
399       -U login
400       --username=login
401           The user name to connect as
402
403       -V
404       --version
405           Print the pgbench version and exit.
406
407       -?
408       --help
409           Show help about pgbench command line arguments, and exit.
410

NOTES

412   What is the “Transaction” Actually Performed in pgbench?
413       pgbench executes test scripts chosen randomly from a specified list.
414       They include built-in scripts with -b and user-provided custom scripts
415       with -f. Each script may be given a relative weight specified after a @
416       so as to change its drawing probability. The default weight is 1.
417       Scripts with a weight of 0 are ignored.
418
419       The default built-in transaction script (also invoked with -b
420       tpcb-like) issues seven commands per transaction over randomly chosen
421       aid, tid, bid and balance. The scenario is inspired by the TPC-B
422       benchmark, but is not actually TPC-B, hence the name.
423
424        1. BEGIN;
425
426        2. UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid
427           = :aid;
428
429        3. SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
430
431        4. UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid =
432           :tid;
433
434        5. UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid
435           = :bid;
436
437        6. INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES
438           (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
439
440        7. END;
441
442       If you select the simple-update built-in (also -N), steps 4 and 5
443       aren't included in the transaction. This will avoid update contention
444       on these tables, but it makes the test case even less like TPC-B.
445
446       If you select the select-only built-in (also -S), only the SELECT is
447       issued.
448
449   Custom Scripts
450       pgbench has support for running custom benchmark scenarios by replacing
451       the default transaction script (described above) with a transaction
452       script read from a file (-f option). In this case a “transaction”
453       counts as one execution of a script file.
454
455       A script file contains one or more SQL commands terminated by
456       semicolons. Empty lines and lines beginning with -- are ignored. Script
457       files can also contain “meta commands”, which are interpreted by
458       pgbench itself, as described below.
459
460           Note
461           Before PostgreSQL 9.6, SQL commands in script files were terminated
462           by newlines, and so they could not be continued across lines. Now a
463           semicolon is required to separate consecutive SQL commands (though
464           a SQL command does not need one if it is followed by a meta
465           command). If you need to create a script file that works with both
466           old and new versions of pgbench, be sure to write each SQL command
467           on a single line ending with a semicolon.
468
469       There is a simple variable-substitution facility for script files.
470       Variable names must consist of letters (including non-Latin letters),
471       digits, and underscores. Variables can be set by the command-line -D
472       option, explained above, or by the meta commands explained below. In
473       addition to any variables preset by -D command-line options, there are
474       a few variables that are preset automatically, listed in Table 241. A
475       value specified for these variables using -D takes precedence over the
476       automatic presets. Once set, a variable's value can be inserted into a
477       SQL command by writing :variablename. When running more than one client
478       session, each session has its own set of variables.
479
480       Table 241. Automatic Variables
481       ┌─────────────┬────────────────────────────┐
482Variable     Description                
483       ├─────────────┼────────────────────────────┤
484       │client_id    │ unique number identifying  │
485       │             │ the client session (starts │
486       │             │ from zero)                 │
487       ├─────────────┼────────────────────────────┤
488       │default_seed │ seed used in hash          │
489       │             │ functions by default       │
490       ├─────────────┼────────────────────────────┤
491       │random_seed  │ random generator seed      │
492       │             │ (unless overwritten with   │
493       │             │ -D)                        │
494       ├─────────────┼────────────────────────────┤
495       │scale        │ current scale factor       │
496       └─────────────┴────────────────────────────┘
497
498       Script file meta commands begin with a backslash (\) and normally
499       extend to the end of the line, although they can be continued to
500       additional lines by writing backslash-return. Arguments to a meta
501       command are separated by white space. These meta commands are
502       supported:
503
504       \if expression
505       \elif expression
506       \else
507       \endif
508           This group of commands implements nestable conditional blocks,
509           similarly to psql's \if expression. Conditional expressions are
510           identical to those with \set, with non-zero values interpreted as
511           true.
512
513       \set varname expression
514           Sets variable varname to a value calculated from expression. The
515           expression may contain the NULL constant, Boolean constants TRUE
516           and FALSE, integer constants such as 5432, double constants such as
517           3.14159, references to variables :variablename, operators with
518           their usual SQL precedence and associativity, function calls, SQL
519           CASE generic conditional expressions and parentheses.
520
521           Functions and most operators return NULL on NULL input.
522
523           For conditional purposes, non zero numerical values are TRUE, zero
524           numerical values and NULL are FALSE.
525
526           When no final ELSE clause is provided to a CASE, the default value
527           is NULL.
528
529           Examples:
530
531               \set ntellers 10 * :scale
532               \set aid (1021 * random(1, 100000 * :scale)) % \
533                          (100000 * :scale) + 1
534               \set divx CASE WHEN :x <> 0 THEN :y/:x ELSE NULL END
535
536       \sleep number [ us | ms | s ]
537           Causes script execution to sleep for the specified duration in
538           microseconds (us), milliseconds (ms) or seconds (s). If the unit is
539           omitted then seconds are the default.  number can be either an
540           integer constant or a :variablename reference to a variable having
541           an integer value.
542
543           Example:
544
545               \sleep 10 ms
546
547       \setshell varname command [ argument ... ]
548           Sets variable varname to the result of the shell command command
549           with the given argument(s). The command must return an integer
550           value through its standard output.
551
552           command and each argument can be either a text constant or a
553           :variablename reference to a variable. If you want to use an
554           argument starting with a colon, write an additional colon at the
555           beginning of argument.
556
557           Example:
558
559               \setshell variable_to_be_assigned command literal_argument :variable ::literal_starting_with_colon
560
561       \shell command [ argument ... ]
562           Same as \setshell, but the result of the command is discarded.
563
564           Example:
565
566               \shell command literal_argument :variable ::literal_starting_with_colon
567
568   Built-In Operators
569       The arithmetic, bitwise, comparison and logical operators listed in
570       Table 242 are built into pgbench and may be used in expressions
571       appearing in \set.
572
573       Table 242. pgbench Operators by increasing precedence
574       ┌──────────────────┬──────────────────┬───────────┬────────┐
575Operator          Description      Example   Result 
576       ├──────────────────┼──────────────────┼───────────┼────────┤
577       │OR                │ logical or       │ 5 or 0    │ TRUE   │
578       ├──────────────────┼──────────────────┼───────────┼────────┤
579       │AND               │ logical and      │ 3 and 0   │ FALSE  │
580       ├──────────────────┼──────────────────┼───────────┼────────┤
581       │NOT               │ logical not      │ not false │ TRUE   │
582       ├──────────────────┼──────────────────┼───────────┼────────┤
583       │IS [NOT]          │ value tests      │ 1 is null │ FALSE  │
584       │(NULL|TRUE|FALSE) │                  │           │        │
585       ├──────────────────┼──────────────────┼───────────┼────────┤
586       │ISNULL|NOTNULL    │ null tests       │ 1 notnull │ TRUE   │
587       ├──────────────────┼──────────────────┼───────────┼────────┤
588       │=                 │ is equal         │ 5 = 4     │ FALSE  │
589       ├──────────────────┼──────────────────┼───────────┼────────┤
590       │<>                │ is not equal     │ 5 <> 4    │ TRUE   │
591       ├──────────────────┼──────────────────┼───────────┼────────┤
592       │!=                │ is not equal     │ 5 != 5    │ FALSE  │
593       ├──────────────────┼──────────────────┼───────────┼────────┤
594       │<                 │ lower than       │ 5 < 4     │ FALSE  │
595       ├──────────────────┼──────────────────┼───────────┼────────┤
596       │<=                │ lower or equal   │ 5 <= 4    │ FALSE  │
597       ├──────────────────┼──────────────────┼───────────┼────────┤
598       │>                 │ greater than     │ 5 > 4     │ TRUE   │
599       ├──────────────────┼──────────────────┼───────────┼────────┤
600       │>=                │ greater or equal │ 5 >= 4    │ TRUE   │
601       ├──────────────────┼──────────────────┼───────────┼────────┤
602       │|                 │ integer bitwise  │ 1 | 2     │ 3      │
603       │                  │ OR               │           │        │
604       ├──────────────────┼──────────────────┼───────────┼────────┤
605       │#                 │ integer bitwise  │ 1 # 3     │ 2      │
606       │                  │ XOR              │           │        │
607       ├──────────────────┼──────────────────┼───────────┼────────┤
608       │&                 │ integer bitwise  │ 1 & 3     │ 1      │
609       │                  │ AND              │           │        │
610       ├──────────────────┼──────────────────┼───────────┼────────┤
611       │~                 │ integer bitwise  │ ~ 1       │ -2     │
612       │                  │ NOT              │           │        │
613       ├──────────────────┼──────────────────┼───────────┼────────┤
614       │<<                │ integer bitwise  │ 1 << 2    │ 4      │
615       │                  │ shift left       │           │        │
616       ├──────────────────┼──────────────────┼───────────┼────────┤
617       │>>                │ integer bitwise  │ 8 >> 2    │ 2      │
618       │                  │ shift right      │           │        │
619       ├──────────────────┼──────────────────┼───────────┼────────┤
620       │+                 │ addition         │ 5 + 4     │ 9      │
621       ├──────────────────┼──────────────────┼───────────┼────────┤
622       │-                 │ subtraction      │ 3 - 2.0   │ 1.0    │
623       ├──────────────────┼──────────────────┼───────────┼────────┤
624       │*                 │ multiplication   │ 5 * 4     │ 20     │
625       ├──────────────────┼──────────────────┼───────────┼────────┤
626       │/                 │ division         │ 5 / 3     │ 1      │
627       │                  │ (integer         │           │        │
628       │                  │ truncates the    │           │        │
629       │                  │ results)         │           │        │
630       ├──────────────────┼──────────────────┼───────────┼────────┤
631       │%                 │ modulo           │ 3 % 2     │ 1      │
632       ├──────────────────┼──────────────────┼───────────┼────────┤
633       │-                 │ opposite         │ - 2.0     │ -2.0   │
634       └──────────────────┴──────────────────┴───────────┴────────┘
635
636   Built-In Functions
637       The functions listed in Table 243 are built into pgbench and may be
638       used in expressions appearing in \set.
639
640       Table 243. pgbench Functions
641       ┌───────────────────────┬───────────────┬───────────────────────────┬───────────────────────┬────────────────────────┐
642Function               Return Type   Description               Example               Result                 
643       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
644abs(a)                 │ same as a     │ absolute                  │ abs(-17)              │ 17                     │
645       │                       │               │ value                     │                       │                        │
646       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
647debug(a)               │ same as a     │ print a to                │ debug(5432.1)         │ 5432.1                 │
648       │                       │               │ stderr,                   │                       │                        │
649       │                       │               │         and               │                       │                        │
650       │                       │               │ return a                  │                       │                        │
651       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
652double(i)              │ double        │ cast to                   │ double(5432)          │ 5432.0                 │
653       │                       │               │ double                    │                       │                        │
654       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
655exp(x)                 │ double        │ exponential               │ exp(1.0)              │ 2.718281828459045      │
656       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
657greatest(a [,          │ double if any │ largest value             │ greatest(5,           │ 5                      │
658... ] )                a is double,  │ among                     │ 4, 3, 2)              │                        │
659       │                       │ else integer  │ arguments                 │                       │                        │
660       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
661hash(a [,              │ integer       │ alias for                 │ hash(10,              │ -5817877081768721676   │
662seed ] )               │               │ hash_murmur2()            │ 5432)                 │                        │
663       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
664hash_fnv1a(a           │ integer       │ FNV-1a hash               │ hash_fnv1a(10,        │ -7793829335365542153   │
665[, seed ] )            │               │                           │ 5432)                 │                        │
666       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
667hash_murmur2(a         │ integer       │ MurmurHash2               │ hash_murmur2(10,      │ -5817877081768721676   │
668[, seed ] )            │               │ hash                      │ 5432)                 │                        │
669       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
670int(x)                 │ integer       │ cast to int               │ int(5.4 + 3.8)        │ 9                      │
671       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
672least(a [, ...         │ double if any │ smallest value            │ least(5, 4, 3,        │ 2.1                    │
673] )                    a is double,  │ among                     │ 2.1)                  │                        │
674       │                       │ else integer  │ arguments                 │                       │                        │
675       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
676ln(x)                  │ double        │ natural                   │ ln(2.718281828459045) │ 1.0                    │
677       │                       │               │ logarithm                 │                       │                        │
678       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
679mod(i, j)              │ integer       │ modulo                    │ mod(54, 32)           │ 22                     │
680       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
681pi()                   │ double        │ value of the              │ pi()                  │ 3.14159265358979323846 │
682       │                       │               │ constant PI               │                       │                        │
683       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
684pow(x, y),             │ double        │ exponentiation            │ pow(2.0, 10),         │ 1024.0                 │
685power(x, y)            │               │                           │ power(2.0, 10)        │                        │
686       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
687random(lb, ub)         │ integer       │ uniformly-distributed     │ random(1, 10)         │ an integer between 1   │
688       │                       │               │ random integer            │                       │ and 10                 │
689       │                       │               │ in [lb, ub]               │                       │                        │
690       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
691random_exponential(lb, │ integer       │ exponentially-distributed │ random_exponential(1, │ an integer between 1   │
692ub, parameter)         │               │ random integer in         │ 10, 3.0)              │ and 10                 │
693       │                       │               │ [lb, ub],                 │                       │                        │
694       │                       │               │               see         │                       │                        │
695       │                       │               │ below                     │                       │                        │
696       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
697random_gaussian(lb,    │ integer       │ Gaussian-distributed      │ random_gaussian(1,    │ an integer between 1   │
698ub, parameter)         │               │ random integer in [lb,    │ 10, 2.5)              │ and 10                 │
699       │                       │               │ ub],                      │                       │                        │
700       │                       │               │               see below   │                       │                        │
701       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
702random_zipfian(lb, ub, │ integer       │ Zipfian-distributed       │ random_zipfian(1, 10, │ an integer between 1   │
703parameter)             │               │ random integer in [lb,    │ 1.5)                  │ and 10                 │
704       │                       │               │ ub],                      │                       │                        │
705       │                       │               │               see below   │                       │                        │
706       ├───────────────────────┼───────────────┼───────────────────────────┼───────────────────────┼────────────────────────┤
707sqrt(x)                │ double        │ square root               │ sqrt(2.0)             │ 1.414213562            │
708       └───────────────────────┴───────────────┴───────────────────────────┴───────────────────────┴────────────────────────┘
709
710       The random function generates values using a uniform distribution, that
711       is all the values are drawn within the specified range with equal
712       probability. The random_exponential, random_gaussian and random_zipfian
713       functions require an additional double parameter which determines the
714       precise shape of the distribution.
715
716       ·   For an exponential distribution, parameter controls the
717           distribution by truncating a quickly-decreasing exponential
718           distribution at parameter, and then projecting onto integers
719           between the bounds. To be precise, with
720
721               f(x) = exp(-parameter * (x - min) / (max - min + 1)) / (1 - exp(-parameter))
722
723           Then value i between min and max inclusive is drawn with
724           probability: f(i) - f(i + 1).
725
726           Intuitively, the larger the parameter, the more frequently values
727           close to min are accessed, and the less frequently values close to
728           max are accessed. The closer to 0 parameter is, the flatter (more
729           uniform) the access distribution. A crude approximation of the
730           distribution is that the most frequent 1% values in the range,
731           close to min, are drawn parameter% of the time. The parameter value
732           must be strictly positive.
733
734       ·   For a Gaussian distribution, the interval is mapped onto a standard
735           normal distribution (the classical bell-shaped Gaussian curve)
736           truncated at -parameter on the left and +parameter on the right.
737           Values in the middle of the interval are more likely to be drawn.
738           To be precise, if PHI(x) is the cumulative distribution function of
739           the standard normal distribution, with mean mu defined as (max +
740           min) / 2.0, with
741
742               f(x) = PHI(2.0 * parameter * (x - mu) / (max - min + 1)) /
743                      (2.0 * PHI(parameter) - 1)
744
745           then value i between min and max inclusive is drawn with
746           probability: f(i + 0.5) - f(i - 0.5). Intuitively, the larger the
747           parameter, the more frequently values close to the middle of the
748           interval are drawn, and the less frequently values close to the min
749           and max bounds. About 67% of values are drawn from the middle 1.0 /
750           parameter, that is a relative 0.5 / parameter around the mean, and
751           95% in the middle 2.0 / parameter, that is a relative 1.0 /
752           parameter around the mean; for instance, if parameter is 4.0, 67%
753           of values are drawn from the middle quarter (1.0 / 4.0) of the
754           interval (i.e. from 3.0 / 8.0 to 5.0 / 8.0) and 95% from the middle
755           half (2.0 / 4.0) of the interval (second and third quartiles). The
756           minimum parameter is 2.0 for performance of the Box-Muller
757           transform.
758
759       ·   random_zipfian generates an approximated bounded Zipfian
760           distribution. For parameter in (0, 1), an approximated algorithm is
761           taken from "Quickly Generating Billion-Record Synthetic Databases",
762           Jim Gray et al, SIGMOD 1994. For parameter in (1, 1000), a
763           rejection method is used, based on "Non-Uniform Random Variate
764           Generation", Luc Devroye, p. 550-551, Springer 1986. The
765           distribution is not defined when the parameter's value is 1.0. The
766           function's performance is poor for parameter values close and above
767           1.0 and on a small range.
768
769           parameter defines how skewed the distribution is. The larger the
770           parameter, the more frequently values closer to the beginning of
771           the interval are drawn. The closer to 0 parameter is, the flatter
772           (more uniform) the output distribution. The distribution is such
773           that, assuming the range starts from 1, the ratio of the
774           probability of drawing k versus drawing k+1 is
775           ((k+1)/k)**parameter. For example, random_zipfian(1, ..., 2.5)
776           produces the value 1 about (2/1)**2.5 = 5.66 times more frequently
777           than 2, which itself is produced (3/2)*2.5 = 2.76 times more
778           frequently than 3, and so on.
779
780       Hash functions hash, hash_murmur2 and hash_fnv1a accept an input value
781       and an optional seed parameter. In case the seed isn't provided the
782       value of :default_seed is used, which is initialized randomly unless
783       set by the command-line -D option. Hash functions can be used to
784       scatter the distribution of random functions such as random_zipfian or
785       random_exponential. For instance, the following pgbench script
786       simulates possible real world workload typical for social media and
787       blogging platforms where few accounts generate excessive load:
788
789           \set r random_zipfian(0, 100000000, 1.07)
790           \set k abs(hash(:r)) % 1000000
791
792       In some cases several distinct distributions are needed which don't
793       correlate with each other and this is when implicit seed parameter
794       comes in handy:
795
796           \set k1 abs(hash(:r, :default_seed + 123)) % 1000000
797           \set k2 abs(hash(:r, :default_seed + 321)) % 1000000
798
799       As an example, the full definition of the built-in TPC-B-like
800       transaction is:
801
802           \set aid random(1, 100000 * :scale)
803           \set bid random(1, 1 * :scale)
804           \set tid random(1, 10 * :scale)
805           \set delta random(-5000, 5000)
806           BEGIN;
807           UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
808           SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
809           UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
810           UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
811           INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
812           END;
813
814       This script allows each iteration of the transaction to reference
815       different, randomly-chosen rows. (This example also shows why it's
816       important for each client session to have its own variables — otherwise
817       they'd not be independently touching different rows.)
818
819   Per-Transaction Logging
820       With the -l option (but without the --aggregate-interval option),
821       pgbench writes information about each transaction to a log file. The
822       log file will be named prefix.nnn, where prefix defaults to
823       pgbench_log, and nnn is the PID of the pgbench process. The prefix can
824       be changed by using the --log-prefix option. If the -j option is 2 or
825       higher, so that there are multiple worker threads, each will have its
826       own log file. The first worker will use the same name for its log file
827       as in the standard single worker case. The additional log files for the
828       other workers will be named prefix.nnn.mmm, where mmm is a sequential
829       number for each worker starting with 1.
830
831       The format of the log is:
832
833           client_id transaction_no time script_no time_epoch time_us [ schedule_lag ]
834
835       where client_id indicates which client session ran the transaction,
836       transaction_no counts how many transactions have been run by that
837       session, time is the total elapsed transaction time in microseconds,
838       script_no identifies which script file was used (useful when multiple
839       scripts were specified with -f or -b), and time_epoch/time_us are a
840       Unix-epoch time stamp and an offset in microseconds (suitable for
841       creating an ISO 8601 time stamp with fractional seconds) showing when
842       the transaction completed. The schedule_lag field is the difference
843       between the transaction's scheduled start time, and the time it
844       actually started, in microseconds. It is only present when the --rate
845       option is used. When both --rate and --latency-limit are used, the time
846       for a skipped transaction will be reported as skipped.
847
848       Here is a snippet of a log file generated in a single-client run:
849
850           0 199 2241 0 1175850568 995598
851           0 200 2465 0 1175850568 998079
852           0 201 2513 0 1175850569 608
853           0 202 2038 0 1175850569 2663
854
855       Another example with --rate=100 and --latency-limit=5 (note the
856       additional schedule_lag column):
857
858           0 81 4621 0 1412881037 912698 3005
859           0 82 6173 0 1412881037 914578 4304
860           0 83 skipped 0 1412881037 914578 5217
861           0 83 skipped 0 1412881037 914578 5099
862           0 83 4722 0 1412881037 916203 3108
863           0 84 4142 0 1412881037 918023 2333
864           0 85 2465 0 1412881037 919759 740
865
866       In this example, transaction 82 was late, because its latency (6.173
867       ms) was over the 5 ms limit. The next two transactions were skipped,
868       because they were already late before they were even started.
869
870       When running a long test on hardware that can handle a lot of
871       transactions, the log files can become very large. The --sampling-rate
872       option can be used to log only a random sample of transactions.
873
874   Aggregated Logging
875       With the --aggregate-interval option, a different format is used for
876       the log files:
877
878           interval_start num_transactions sum_latency sum_latency_2 min_latency max_latency [ sum_lag sum_lag_2 min_lag max_lag [ skipped ] ]
879
880       where interval_start is the start of the interval (as a Unix epoch time
881       stamp), num_transactions is the number of transactions within the
882       interval, sum_latency is the sum of the transaction latencies within
883       the interval, sum_latency_2 is the sum of squares of the transaction
884       latencies within the interval, min_latency is the minimum latency
885       within the interval, and max_latency is the maximum latency within the
886       interval. The next fields, sum_lag, sum_lag_2, min_lag, and max_lag,
887       are only present if the --rate option is used. They provide statistics
888       about the time each transaction had to wait for the previous one to
889       finish, i.e. the difference between each transaction's scheduled start
890       time and the time it actually started. The very last field, skipped, is
891       only present if the --latency-limit option is used, too. It counts the
892       number of transactions skipped because they would have started too
893       late. Each transaction is counted in the interval when it was
894       committed.
895
896       Here is some example output:
897
898           1345828501 5601 1542744 483552416 61 2573
899           1345828503 7884 1979812 565806736 60 1479
900           1345828505 7208 1979422 567277552 59 1391
901           1345828507 7685 1980268 569784714 60 1398
902           1345828509 7073 1979779 573489941 236 1411
903
904       Notice that while the plain (unaggregated) log file shows which script
905       was used for each transaction, the aggregated log does not. Therefore
906       if you need per-script data, you need to aggregate the data on your
907       own.
908
909   Per-Statement Latencies
910       With the -r option, pgbench collects the elapsed transaction time of
911       each statement executed by every client. It then reports an average of
912       those values, referred to as the latency for each statement, after the
913       benchmark has finished.
914
915       For the default script, the output will look similar to this:
916
917           starting vacuum...end.
918           transaction type: <builtin: TPC-B (sort of)>
919           scaling factor: 1
920           query mode: simple
921           number of clients: 10
922           number of threads: 1
923           number of transactions per client: 1000
924           number of transactions actually processed: 10000/10000
925           latency average = 15.844 ms
926           latency stddev = 2.715 ms
927           tps = 618.764555 (including connections establishing)
928           tps = 622.977698 (excluding connections establishing)
929           statement latencies in milliseconds:
930                   0.002  \set aid random(1, 100000 * :scale)
931                   0.005  \set bid random(1, 1 * :scale)
932                   0.002  \set tid random(1, 10 * :scale)
933                   0.001  \set delta random(-5000, 5000)
934                   0.326  BEGIN;
935                   0.603  UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
936                   0.454  SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
937                   5.528  UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
938                   7.335  UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
939                   0.371  INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
940                   1.212  END;
941
942       If multiple script files are specified, the averages are reported
943       separately for each script file.
944
945       Note that collecting the additional timing information needed for
946       per-statement latency computation adds some overhead. This will slow
947       average execution speed and lower the computed TPS. The amount of
948       slowdown varies significantly depending on platform and hardware.
949       Comparing average TPS values with and without latency reporting enabled
950       is a good way to measure if the timing overhead is significant.
951
952   Good Practices
953       It is very easy to use pgbench to produce completely meaningless
954       numbers. Here are some guidelines to help you get useful results.
955
956       In the first place, never believe any test that runs for only a few
957       seconds. Use the -t or -T option to make the run last at least a few
958       minutes, so as to average out noise. In some cases you could need hours
959       to get numbers that are reproducible. It's a good idea to try the test
960       run a few times, to find out if your numbers are reproducible or not.
961
962       For the default TPC-B-like test scenario, the initialization scale
963       factor (-s) should be at least as large as the largest number of
964       clients you intend to test (-c); else you'll mostly be measuring update
965       contention. There are only -s rows in the pgbench_branches table, and
966       every transaction wants to update one of them, so -c values in excess
967       of -s will undoubtedly result in lots of transactions blocked waiting
968       for other transactions.
969
970       The default test scenario is also quite sensitive to how long it's been
971       since the tables were initialized: accumulation of dead rows and dead
972       space in the tables changes the results. To understand the results you
973       must keep track of the total number of updates and when vacuuming
974       happens. If autovacuum is enabled it can result in unpredictable
975       changes in measured performance.
976
977       A limitation of pgbench is that it can itself become the bottleneck
978       when trying to test a large number of client sessions. This can be
979       alleviated by running pgbench on a different machine from the database
980       server, although low network latency will be essential. It might even
981       be useful to run several pgbench instances concurrently, on several
982       client machines, against the same database server.
983
984   Security
985       If untrusted users have access to a database that has not adopted a
986       secure schema usage pattern, do not run pgbench in that database.
987       pgbench uses unqualified names and does not manipulate the search path.
988
989
990
991PostgreSQL 11.3                      2019                           PGBENCH(1)
Impressum