1solve_evp_complex(3)       Library Functions Manual       solve_evp_complex(3)
2
3
4

NAME

6       solve_evp_complex - solve the double-precision complex eigenvalue
7       problem with the 1-stage ELPA solver.  This interface is old and
8       deprecated. It is recommended to use solve_evp_complex_1stage_double(3)
9
10

SYNOPSIS

12   FORTRAN INTERFACE
13       use elpa1
14       success = solve_evp_complex (na, nev, a(lda,matrixCols), ev(nev),
15       q(ldq, matrixCols), ldq, nblk, matrixCols, mpi_comm_rows,
16       mpi_comm_cols, mpi_comm_all, useGPU)
17
18       With the definitions of the input and output variables:
19
20       integer,     intent(in)    na:            global dimension of quadratic
21       matrix a to solve
22       integer,     intent(in)    nev:           number of eigenvalues to be
23       computed; the first nev eigenvalules are calculated
24       complex*16,  intent(inout)    a:             locally distributed part
25       of the matrix a. The local dimensions are lda x matrixCols
26       integer,     intent(in)       lda:           leading dimension of
27       locally distributed matrix a
28       real*8,      intent(inout)    ev:            on output the first nev
29       computed eigenvalues
30       complex*16,  intent(inout)    q:             on output the first nev
31       computed eigenvectors
32       integer,     intent(in)       ldq:           leading dimension of
33       matrix q which stores the eigenvectors
34       integer,     intent(in)       nblk:          blocksize of block cyclic
35       distributin, must be the same in both directions
36       integer,     intent(in)       matrixCols:    number of columns of
37       locally distributed matrices a and q
38       integer,     intent(in)       mpi_comm_rows: communicator for
39       communication in rows. Constructed with elpa_get_communicators(3)
40       integer, intent(in)           mpi_comm_cols: communicator for
41       communication in colums. Constructed with elpa_get_communicators(3)
42       integer, intent(in)           mpi_comm_all:  communicator for all MPI
43       process used in ELPA
44       logical, optional, intent(in) useGPU:        decide whether GPUs should
45       be used or not
46
47       logical                       success:       return value indicating
48       success or failure
49

DESCRIPTION

51       Old, deprecated interface, which will be deleted at some point. Use
52       solve_evp_complex_1stage(3) or elpa_solve_evp_complex(3).  Solve the
53       complex eigenvalue problem with the 1-stage solver. The ELPA
54       communicators mpi_comm_rows and mpi_comm_cols are obtained with the
55       elpa_get_communicators(3) function. The distributed quadratic marix a
56       has global dimensions na x na, and a local size lda x matrixCols. The
57       solver will compute the first nev eigenvalues, which will be stored on
58       exit in ev. The eigenvectors corresponding to the eigenvalues will be
59       stored in q. All memory of the arguments must be allocated outside the
60       call to the solver.
61

SEE ALSO

63       elpa_get_communicators(3) elpa_solve_evp_real_double(3)
64       elpa_solve_evp_real_single(3) elpa_solve_evp_complex_double(3)
65       elpa_solve_evp_complex_single(3) elpa_solve_evp_real_1stage_double(3)
66       elpa_solve_evp_real_1stage_single(3)
67       elpa_solve_evp_complex_1stage_single(3)
68       elpa_solve_evp_real_2stage_double(3)
69       elpa_solve_evp_real_2stage_single(3)
70       elpa_solve_evp_complex_2stage_double(3)
71       elpa_solve_evp_complex_2stage_single(3) elpa2_print_kernels(1)
72
73
74
75ELPA                            Thu Mar 17 2016           solve_evp_complex(3)
Impressum