1solve_evp_real(3)          Library Functions Manual          solve_evp_real(3)
2
3
4

NAME

6       solve_evp_real - solve the double-precision real eigenvalue problem
7       with the 1-stage ELPA solver.  This is an old and deprecated interface.
8       It is recommendet to use solve_evp_real_1stage_double(3)
9
10

SYNOPSIS

12   FORTRAN INTERFACE
13       use elpa1
14       success = solve_evp_real (na, nev, a(lda,matrixCols), ev(nev), q(ldq,
15       matrixCols), ldq, nblk, matrixCols, mpi_comm_rows, mpi_comm_cols,
16       mpi_comm_all, useGPU)
17
18       With the definitions of the input and output variables:
19
20       integer, intent(in)           na:            global dimension of
21       quadratic matrix a to solve
22       integer, intent(in)           nev:           number of eigenvalues to
23       be computed; the first nev eigenvalules are calculated
24       real*8,  intent(inout)        a:             locally distributed part
25       of the matrix a. The local dimensions are lda x matrixCols
26       integer, intent(in)           lda:           leading dimension of
27       locally distributed matrix a
28       real*8,  intent(inout)        ev:            on output the first nev
29       computed eigenvalues
30       real*8,  intent(inout)        q:             on output the first nev
31       computed eigenvectors
32       integer, intent(in)           ldq:           leading dimension of
33       matrix q which stores the eigenvectors
34       integer, intent(in)           nblk:          blocksize of block cyclic
35       distributin, must be the same in both directions
36       integer, intent(in)           matrixCols:    number of columns of
37       locally distributed matrices a and q
38       integer, intent(in)           mpi_comm_rows: communicator for
39       communication in rows. Constructed with elpa_get_communicators(3)
40       integer, intent(in)           mpi_comm_cols: communicator for
41       communication in colums. Constructed with elpa_get_communicators(3)
42       integer, intent(in)           mpi_comm_all:  communicator for all MPI
43       processes used in ELPA
44       logical, optional, intent(in) useGPU:        decide whether GPUs should
45       be used or not
46
47       logical                success:       return value indicating success
48       or failure
49

DESCRIPTION

51       Old, deprecated interface, which will be deleted at some point. Use
52       solve_evp_real_1stage(3) or elpa_solve_evp_real(3).  Solve the real
53       eigenvalue problem with the 1-stage solver. The ELPA communicators
54       mpi_comm_rows and mpi_comm_cols are obtained with the
55       elpa_get_communicators(3) function. The distributed quadratic marix a
56       has global dimensions na x na, and a local size lda x matrixCols. The
57       solver will compute the first nev eigenvalues, which will be stored on
58       exit in ev. The eigenvectors corresponding to the eigenvalues will be
59       stored in q. All memory of the arguments must be allocated outside the
60       call to the solver.
61

SEE ALSO

63       elpa_get_communicators(3) elpa_solve_evp_real_double(3)
64       elpa_solve_evp_real_single(3) elpa_solve_evp_complex_doulbe(3)
65       elpa_solve_evp_complex_single(3) elpa_solve_evp_real_1stage_single(3)
66       elpa_solve_evp_complex_1stage_double(3)
67       elpa_solve_evp_complex_1stage_single(3)
68       elpa_solve_evp_real_2stage_double(3)
69       elpa_solve_evp_real_2stage_single(3)
70       elpa_solve_evp_complex_2stage_double(3)
71       elpa_solve_evp_complex_2stage_single(3) elpa2_print_kernels(1)
72
73
74
75ELPA                            Thu Mar 17 2016              solve_evp_real(3)
Impressum