1ELLINT(3)             User Contributed Perl Documentation            ELLINT(3)
2
3
4

NAME

6       PDL::GSLSF::ELLINT - PDL interface to GSL Special Functions
7

DESCRIPTION

9       This is an interface to the Special Function package present in the GNU
10       Scientific Library.
11

SYNOPSIS

FUNCTIONS

14   gsl_sf_ellint_Kcomp
15         Signature: (double k(); double [o]y(); double [o]e())
16
17       Legendre form of complete elliptic integrals K(k) = Integral[1/Sqrt[1 -
18       k^2 Sin[t]^2], {t, 0, Pi/2}].
19
20       gsl_sf_ellint_Kcomp does not process bad values.  It will set the bad-
21       value flag of all output piddles if the flag is set for any of the
22       input piddles.
23
24   gsl_sf_ellint_Ecomp
25         Signature: (double k(); double [o]y(); double [o]e())
26
27       Legendre form of complete elliptic integrals E(k) = Integral[  Sqrt[1 -
28       k^2 Sin[t]^2], {t, 0, Pi/2}]
29
30       gsl_sf_ellint_Ecomp does not process bad values.  It will set the bad-
31       value flag of all output piddles if the flag is set for any of the
32       input piddles.
33
34   gsl_sf_ellint_F
35         Signature: (double phi(); double k(); double [o]y(); double [o]e())
36
37       Legendre form of incomplete elliptic integrals F(phi,k)   =
38       Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
39
40       gsl_sf_ellint_F does not process bad values.  It will set the bad-value
41       flag of all output piddles if the flag is set for any of the input
42       piddles.
43
44   gsl_sf_ellint_E
45         Signature: (double phi(); double k(); double [o]y(); double [o]e())
46
47       Legendre form of incomplete elliptic integrals E(phi,k)   = Integral[
48       Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
49
50       gsl_sf_ellint_E does not process bad values.  It will set the bad-value
51       flag of all output piddles if the flag is set for any of the input
52       piddles.
53
54   gsl_sf_ellint_P
55         Signature: (double phi(); double k(); double n();
56                     double [o]y(); double [o]e())
57
58       Legendre form of incomplete elliptic integrals P(phi,k,n) = Integral[(1
59       + n Sin[t]^2)^(-1)/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
60
61       gsl_sf_ellint_P does not process bad values.  It will set the bad-value
62       flag of all output piddles if the flag is set for any of the input
63       piddles.
64
65   gsl_sf_ellint_D
66         Signature: (double phi(); double k();
67                     double [o]y(); double [o]e())
68
69       Legendre form of incomplete elliptic integrals D(phi,k)
70
71       gsl_sf_ellint_D does not process bad values.  It will set the bad-value
72       flag of all output piddles if the flag is set for any of the input
73       piddles.
74
75   gsl_sf_ellint_RC
76         Signature: (double x(); double yy(); double [o]y(); double [o]e())
77
78       Carlsons symmetric basis of functions RC(x,y)   = 1/2
79       Integral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf}
80
81       gsl_sf_ellint_RC does not process bad values.  It will set the bad-
82       value flag of all output piddles if the flag is set for any of the
83       input piddles.
84
85   gsl_sf_ellint_RD
86         Signature: (double x(); double yy(); double z(); double [o]y(); double [o]e())
87
88       Carlsons symmetric basis of functions RD(x,y,z) = 3/2
89       Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}]
90
91       gsl_sf_ellint_RD does not process bad values.  It will set the bad-
92       value flag of all output piddles if the flag is set for any of the
93       input piddles.
94
95   gsl_sf_ellint_RF
96         Signature: (double x(); double yy(); double z(); double [o]y(); double [o]e())
97
98       Carlsons symmetric basis of functions RF(x,y,z) = 1/2
99       Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}]
100
101       gsl_sf_ellint_RF does not process bad values.  It will set the bad-
102       value flag of all output piddles if the flag is set for any of the
103       input piddles.
104
105   gsl_sf_ellint_RJ
106         Signature: (double x(); double yy(); double z(); double p(); double [o]y(); double [o]e())
107
108       Carlsons symmetric basis of functions RJ(x,y,z,p) = 3/2
109       Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}]
110
111       gsl_sf_ellint_RJ does not process bad values.  It will set the bad-
112       value flag of all output piddles if the flag is set for any of the
113       input piddles.
114

AUTHOR

116       This file copyright (C) 1999 Christian Pellegrin
117       <chri@infis.univ.trieste.it>, 2002 Christian Soeller.  All rights
118       reserved. There is no warranty. You are allowed to redistribute this
119       software / documentation under certain conditions. For details, see the
120       file COPYING in the PDL distribution. If this file is separated from
121       the PDL distribution, the copyright notice should be included in the
122       file.
123
124       The GSL SF modules were written by G. Jungman.
125
126
127
128perl v5.30.0                      2019-09-05                         ELLINT(3)
Impressum