1ELLINT(3) User Contributed Perl Documentation ELLINT(3)
2
3
4
6 PDL::GSLSF::ELLINT - PDL interface to GSL Special Functions
7
9 This is an interface to the Special Function package present in the GNU
10 Scientific Library.
11
15 gsl_sf_ellint_Kcomp
16
17 Signature: (double k(); double [o]y(); double [o]e())
18
19 Legendre form of complete elliptic integrals K(k) = Integral[1/Sqrt[1 -
20 k^2 Sin[t]^2], {t, 0, Pi/2}].
21
22 gsl_sf_ellint_Ecomp
23
24 Signature: (double k(); double [o]y(); double [o]e())
25
26 Legendre form of complete elliptic integrals E(k) = Integral[ Sqrt[1 -
27 k^2 Sin[t]^2], {t, 0, Pi/2}]
28
29 gsl_sf_ellint_F
30
31 Signature: (double phi(); double k(); double [o]y(); double [o]e())
32
33 Legendre form of incomplete elliptic integrals F(phi,k) = Inte‐
34 gral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
35
36 gsl_sf_ellint_E
37
38 Signature: (double phi(); double k(); double [o]y(); double [o]e())
39
40 Legendre form of incomplete elliptic integrals E(phi,k) = Integral[
41 Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
42
43 gsl_sf_ellint_P
44
45 Signature: (double phi(); double k(); double n();
46 double [o]y(); double [o]e())
47
48 Legendre form of incomplete elliptic integrals P(phi,k,n) = Integral[(1
49 + n Sin[t]^2)^(-1)/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
50
51 gsl_sf_ellint_D
52
53 Signature: (double phi(); double k(); double n();
54 double [o]y(); double [o]e())
55
56 Legendre form of incomplete elliptic integrals D(phi,k,n)
57
58 gsl_sf_ellint_RC
59
60 Signature: (double x(); double yy(); double [o]y(); double [o]e())
61
62 Carlsons symmetric basis of functions RC(x,y) = 1/2 Inte‐
63 gral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf}
64
65 gsl_sf_ellint_RD
66
67 Signature: (double x(); double yy(); double z(); double [o]y(); double [o]e())
68
69 Carlsons symmetric basis of functions RD(x,y,z) = 3/2 Inte‐
70 gral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}]
71
72 gsl_sf_ellint_RF
73
74 Signature: (double x(); double yy(); double z(); double [o]y(); double [o]e())
75
76 Carlsons symmetric basis of functions RF(x,y,z) = 1/2 Inte‐
77 gral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}]
78
79 gsl_sf_ellint_RJ
80
81 Signature: (double x(); double yy(); double z(); double p(); double [o]y(); double [o]e())
82
83 Carlsons symmetric basis of functions RJ(x,y,z,p) = 3/2 Inte‐
84 gral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}]
85
87 This file copyright (C) 1999 Christian Pellegrin <chri@infis.univ.tri‐
88 este.it>, 2002 Christian Soeller. All rights reserved. There is no
89 warranty. You are allowed to redistribute this software / documentation
90 under certain conditions. For details, see the file COPYING in the PDL
91 distribution. If this file is separated from the PDL distribution, the
92 copyright notice should be included in the file.
93
94 The GSL SF modules were written by G. Jungman.
95
96
97
98perl v5.8.8 2006-12-02 ELLINT(3)