1ELLINT(3)             User Contributed Perl Documentation            ELLINT(3)
2
3
4

NAME

6       PDL::GSLSF::ELLINT - PDL interface to GSL Special Functions
7

DESCRIPTION

9       This is an interface to the Special Function package present in the GNU
10       Scientific Library.
11

SYNOPSIS

Functions

FUNCTIONS

15       gsl_sf_ellint_Kcomp
16
17         Signature: (double k(); double [o]y(); double [o]e())
18
19       Legendre form of complete elliptic integrals K(k) = Integral[1/Sqrt[1 -
20       k^2 Sin[t]^2], {t, 0, Pi/2}].
21
22       gsl_sf_ellint_Ecomp
23
24         Signature: (double k(); double [o]y(); double [o]e())
25
26       Legendre form of complete elliptic integrals E(k) = Integral[  Sqrt[1 -
27       k^2 Sin[t]^2], {t, 0, Pi/2}]
28
29       gsl_sf_ellint_F
30
31         Signature: (double phi(); double k(); double [o]y(); double [o]e())
32
33       Legendre form of incomplete elliptic integrals F(phi,k)   = Inte‐
34       gral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
35
36       gsl_sf_ellint_E
37
38         Signature: (double phi(); double k(); double [o]y(); double [o]e())
39
40       Legendre form of incomplete elliptic integrals E(phi,k)   = Integral[
41       Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
42
43       gsl_sf_ellint_P
44
45         Signature: (double phi(); double k(); double n();
46                     double [o]y(); double [o]e())
47
48       Legendre form of incomplete elliptic integrals P(phi,k,n) = Integral[(1
49       + n Sin[t]^2)^(-1)/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}]
50
51       gsl_sf_ellint_D
52
53         Signature: (double phi(); double k(); double n();
54                     double [o]y(); double [o]e())
55
56       Legendre form of incomplete elliptic integrals D(phi,k,n)
57
58       gsl_sf_ellint_RC
59
60         Signature: (double x(); double yy(); double [o]y(); double [o]e())
61
62       Carlsons symmetric basis of functions RC(x,y)   = 1/2 Inte‐
63       gral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf}
64
65       gsl_sf_ellint_RD
66
67         Signature: (double x(); double yy(); double z(); double [o]y(); double [o]e())
68
69       Carlsons symmetric basis of functions RD(x,y,z) = 3/2 Inte‐
70       gral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}]
71
72       gsl_sf_ellint_RF
73
74         Signature: (double x(); double yy(); double z(); double [o]y(); double [o]e())
75
76       Carlsons symmetric basis of functions RF(x,y,z) = 1/2 Inte‐
77       gral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}]
78
79       gsl_sf_ellint_RJ
80
81         Signature: (double x(); double yy(); double z(); double p(); double [o]y(); double [o]e())
82
83       Carlsons symmetric basis of functions RJ(x,y,z,p) = 3/2 Inte‐
84       gral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}]
85

AUTHOR

87       This file copyright (C) 1999 Christian Pellegrin <chri@infis.univ.tri‐
88       este.it>, 2002 Christian Soeller.  All rights reserved. There is no
89       warranty. You are allowed to redistribute this software / documentation
90       under certain conditions. For details, see the file COPYING in the PDL
91       distribution. If this file is separated from the PDL distribution, the
92       copyright notice should be included in the file.
93
94       The GSL SF modules were written by G. Jungman.
95
96
97
98perl v5.8.8                       2006-12-02                         ELLINT(3)
Impressum