1OPENSSL_SECURE_MALLOC(3) OpenSSL OPENSSL_SECURE_MALLOC(3)
2
3
4
6 CRYPTO_secure_malloc_init, CRYPTO_secure_malloc_initialized,
7 CRYPTO_secure_malloc_done, OPENSSL_secure_malloc, CRYPTO_secure_malloc,
8 OPENSSL_secure_zalloc, CRYPTO_secure_zalloc, OPENSSL_secure_free,
9 CRYPTO_secure_free, OPENSSL_secure_clear_free,
10 CRYPTO_secure_clear_free, OPENSSL_secure_actual_size,
11 CRYPTO_secure_used - secure heap storage
12
14 #include <openssl/crypto.h>
15
16 int CRYPTO_secure_malloc_init(size_t size, int minsize);
17
18 int CRYPTO_secure_malloc_initialized();
19
20 int CRYPTO_secure_malloc_done();
21
22 void *OPENSSL_secure_malloc(size_t num);
23 void *CRYPTO_secure_malloc(size_t num, const char *file, int line);
24
25 void *OPENSSL_secure_zalloc(size_t num);
26 void *CRYPTO_secure_zalloc(size_t num, const char *file, int line);
27
28 void OPENSSL_secure_free(void* ptr);
29 void CRYPTO_secure_free(void *ptr, const char *, int);
30
31 void OPENSSL_secure_clear_free(void* ptr, size_t num);
32 void CRYPTO_secure_clear_free(void *ptr, size_t num, const char *, int);
33
34 size_t OPENSSL_secure_actual_size(const void *ptr);
35
36 size_t CRYPTO_secure_used();
37
39 In order to help protect applications (particularly long-running
40 servers) from pointer overruns or underruns that could return arbitrary
41 data from the program's dynamic memory area, where keys and other
42 sensitive information might be stored, OpenSSL supports the concept of
43 a "secure heap." The level and type of security guarantees depend on
44 the operating system. It is a good idea to review the code and see if
45 it addresses your threat model and concerns.
46
47 If a secure heap is used, then private key BIGNUM values are stored
48 there. This protects long-term storage of private keys, but will not
49 necessarily put all intermediate values and computations there.
50
51 CRYPTO_secure_malloc_init() creates the secure heap, with the specified
52 "size" in bytes. The "minsize" parameter is the minimum size to
53 allocate from the heap. Both "size" and "minsize" must be a power of
54 two.
55
56 CRYPTO_secure_malloc_initialized() indicates whether or not the secure
57 heap as been initialized and is available.
58
59 CRYPTO_secure_malloc_done() releases the heap and makes the memory
60 unavailable to the process if all secure memory has been freed. It can
61 take noticeably long to complete.
62
63 OPENSSL_secure_malloc() allocates "num" bytes from the heap. If
64 CRYPTO_secure_malloc_init() is not called, this is equivalent to
65 calling OPENSSL_malloc(). It is a macro that expands to
66 CRYPTO_secure_malloc() and adds the "__FILE__" and "__LINE__"
67 parameters.
68
69 OPENSSL_secure_zalloc() and CRYPTO_secure_zalloc() are like
70 OPENSSL_secure_malloc() and CRYPTO_secure_malloc(), respectively,
71 except that they call memset() to zero the memory before returning.
72
73 OPENSSL_secure_free() releases the memory at "ptr" back to the heap.
74 It must be called with a value previously obtained from
75 OPENSSL_secure_malloc(). If CRYPTO_secure_malloc_init() is not called,
76 this is equivalent to calling OPENSSL_free(). It exists for
77 consistency with OPENSSL_secure_malloc() , and is a macro that expands
78 to CRYPTO_secure_free() and adds the "__FILE__" and "__LINE__"
79 parameters..
80
81 OPENSSL_secure_clear_free() is similar to OPENSSL_secure_free() except
82 that it has an additional "num" parameter which is used to clear the
83 memory if it was not allocated from the secure heap. If
84 CRYPTO_secure_malloc_init() is not called, this is equivalent to
85 calling OPENSSL_clear_free().
86
87 OPENSSL_secure_actual_size() tells the actual size allocated to the
88 pointer; implementations may allocate more space than initially
89 requested, in order to "round up" and reduce secure heap fragmentation.
90
91 CRYPTO_secure_used() returns the number of bytes allocated in the
92 secure heap.
93
95 CRYPTO_secure_malloc_init() returns 0 on failure, 1 if successful, and
96 2 if successful but the heap could not be protected by memory mapping.
97
98 CRYPTO_secure_malloc_initialized() returns 1 if the secure heap is
99 available (that is, if CRYPTO_secure_malloc_init() has been called, but
100 CRYPTO_secure_malloc_done() has not been called or failed) or 0 if not.
101
102 OPENSSL_secure_malloc() and OPENSSL_secure_zalloc() return a pointer
103 into the secure heap of the requested size, or "NULL" if memory could
104 not be allocated.
105
106 CRYPTO_secure_allocated() returns 1 if the pointer is in the secure
107 heap, or 0 if not.
108
109 CRYPTO_secure_malloc_done() returns 1 if the secure memory area is
110 released, or 0 if not.
111
112 OPENSSL_secure_free() and OPENSSL_secure_clear_free() return no values.
113
115 OPENSSL_malloc(3), BN_new(3)
116
118 The OPENSSL_secure_clear_free() function was added in OpenSSL 1.1.0g.
119
121 Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
122
123 Licensed under the OpenSSL license (the "License"). You may not use
124 this file except in compliance with the License. You can obtain a copy
125 in the file LICENSE in the source distribution or at
126 <https://www.openssl.org/source/license.html>.
127
128
129
1301.1.1d 2019-10-03 OPENSSL_SECURE_MALLOC(3)