1hpcg_kernel(1)                 Utility Commands                 hpcg_kernel(1)
2
3
4

NAME

6       hpcg_kernel - high performance conjugate gradient kernel benchmark
7
8

SYNOPSIS

10       hpcg_kernel matrix_type solution_filename rhistory_filename [options]
11
12

DESCRIPTION

14       This  program  solves the linear equation Ax = b with additive Schwarz,
15       symmetric Gauss-Seidel preconditioned conjugate gradient solver,  where
16       the  coefficient  matrix  A  of  size lmn is derived from a discretized
17       three dimensional Poisson's equation using the twenty-seven point  cen‐
18       tral difference scheme, with the coefficient matrix in the storage for‐
19       mat specified by matrix_type and the solver specified by  options.   It
20       outputs the solution to solution_filename in the extended Matrix Market
21       format and the residual history to  rhistory_filename in the PLAIN for‐
22       mat  (see  Appendix of the Lis User Guide).  The right-hand side vector
23       is set such that the values of the elements of the solution are 1.  The
24       values  l,  m and n represent the numbers of grid points in each dimen‐
25       sion.
26
27

OVERRIDE OPTIONS

29       The following options are supported:
30
31       -i linear solver
32              The following options are supported for linear solver:
33
34              -i {cg|1}
35                     CG
36
37              -i {bicg|2}
38                     BiCG
39
40              -i {cgs|3}
41                     CGS
42
43              -i {bicgstab|4}
44                     BiCGSTAB
45
46              -i {bicgstabl|5}
47                     BiCGSTAB(l)
48
49                     -ell [2]
50                            The degree l
51
52              -i {gpbicg|6}
53                     GPBiCG
54
55              -i {tfqmr|7}
56                     TFQMR
57
58              -i {orthomin|8}
59                     Orthomin(m)
60
61                     -restart [40]
62                            The restart value m
63
64              -i {gmres|9}
65                     GMRES(m)
66
67                     -restart [40]
68                            The restart value m
69
70              -i {jacobi|10}
71                     Jacobi
72
73              -i {gs|11}
74                     Gauss-Seidel
75
76              -i {sor|12}
77                     SOR
78
79                     -omega [1.9]
80                            The relaxation coefficient omega (0<omega<2)
81
82              -i {bicgsafe|13}
83                     BiCGSafe
84
85              -i {cr|14}
86                     CR
87
88              -i {bicr|15}
89                     BiCR
90
91              -i {crs|16}
92                     CRS
93
94              -i {bicrstab|17}
95                     BiCRSTAB
96
97              -i {gpbicr|18}
98                     GPBiCR
99
100              -i {bicrsafe|19}
101                     BiCRSafe
102
103              -i {fgmres|20}
104                     FGMRES(m)
105
106                     -restart [40]
107                            The restart value m
108
109              -i {idrs|21}
110                     IDR(s)
111
112                     -irestart [2]
113                            The restart value s
114
115              -i {idr1|22}
116                     IDR(1)
117
118              -i {minres|23}
119                     MINRES
120
121              -i {COCG|24}
122                     COCG
123
124              -i {COCR|25}
125                     COCR
126
127
128
129       -p preconditioner
130              The following options are supported for preconditioner:
131
132              -p {none|0}
133                     None
134
135              -p {jacobi|1}
136                     Jacobi
137
138              -p {ilu|2}
139                     ILU(k)
140
141                     -ilu_fill [0]
142                            The fill level k
143
144              -p {ssor|3}
145                     SSOR
146
147                     -ssor_omega [1.0]
148                            The relaxation coefficient omega (0<omega<2)
149
150              -p {hybrid|4}
151                     Hybrid
152
153                     -hybrid_i [sor]
154                            The linear solver
155
156                     -hybrid_maxiter [25]
157                            The maximum number of the iterations
158
159                     -hybrid_tol [1.0e-3]
160                            The convergence criterion
161
162                     -hybrid_omega [1.5]
163                            The  relaxation  coefficient  omega  of  the   SOR
164                            (0<omega<2)
165
166                     -hybrid_ell [2]
167                            The degree l of the BiCGSTAB(l)
168
169                     -hybrid_restart [40]
170                            The restart values of the GMRES and Orthomin
171
172              -p {is|5}
173                     I+S
174
175                     -is_alpha [1.0]
176                            The parameter alpha of I+alpha*S(m)
177
178                     -is_m [3]
179                            The parameter m of I+alpha*S(m)
180
181              -p {sainv|6}
182                     SAINV
183
184                     -sainv_drop [0.05]
185                            The drop criterion
186
187              -p {saamg|7}
188                     SA-AMG
189
190                     -saamg_unsym [false]
191                            Select  the unsymmetric version (The matrix struc‐
192                            ture must be symmetric)
193
194                     -saamg_theta [0.05|0.12]
195                            The drop criterion
196
197              -p {iluc|8}
198                     Crout ILU
199
200                     -iluc_drop [0.05]
201                            The drop criterion
202
203                     -iluc_rate [5.0]
204                            The ration of maximum fill-in
205
206              -p {ilut|9}
207                     ILUT
208
209                     -ilut_drop [0.05]
210                            The drop criterion
211
212                     -ilut_rate [5.0]
213                            The ration of maximum fill-in
214
215              -adds true
216                     Additive Schwarz
217
218                     -adds_iter [1]
219                            The number of the iteration
220
221       Other Options:
222
223       -maxiter [1000]
224              The maximum number of the iterations
225
226       -tol [1.0e-12]
227              The convergence criterion
228
229       -print [0]
230              The display of the residual history
231
232              -print {none|0}
233                     None
234
235              -print {mem|1}
236                     Save the residual history
237
238              -print {out|2}
239                     Display the residual history
240
241              -print {all|3}
242                     Save the residual history and output it to  the  standard
243                     output
244
245       -scale [0]
246              The scaling
247
248              -scale {none|0}
249                     No scaling
250
251              -scale {jacobi|1}
252                     The Jacobi scaling
253
254              -scale {symm_diag|2}
255                     The diagonal scaling
256
257       -initx_zeros [true]
258              The behavior of the initial vector x_0
259
260              -initx_zero {false|0}
261                     Given values
262
263              -initx_zero {true|1}
264                     All values are set to 0
265
266       -omp_num_threads [t]
267              The  number  of  the threads (t represents the maximum number of
268              the threads)
269
270       -storage [0]
271              The matrix storage format
272
273       -storage_block [2]
274              The block size of the BSR and BSC formats
275
276       -f [0] The precision of the linear solver
277
278              -f {double|0}
279                     Double precision
280
281              -f {quad|1}
282                     Double-double (quadruple) precision
283
284       See Lis User Guide for full description.
285
286

EXIT STATUS

288       The following exit values are returned:
289
290       0      The process is normally terminated
291
292       unspecified
293              An error occurred
294
295

SEE ALSO

297       lis(3),   lsolve(1),   esolve(1),    hpcg_spmvtest(1),    spmvtest1(1),
298       spmvtest2(1), spmvtest2b(1), spmvtest3(1), spmvtest3b(1), spmvtest4(1),
299       spmvtest5(1)
300
301       http://www.ssisc.org/lis/
302       http://software.sandia.gov/hpcg/
303
304
305
306
307Man Page                          14 Sep 2017                   hpcg_kernel(1)
Impressum