1builddir::build::BUILD::libbcueirlfd-dvli1ir.b:1c:3eb:ru:fimlamdna::n::uBvaUolIiLgDt:(:3l)ibcerf-v1.13::man::voigt(3)
2
3
4
6 voigt - Voigt's function, convolution of Gaussian and Lorentzian
7
9 #include <cerf.h>
10
11 double voigt ( double x, double sigma, double gamma );
12
14 The function voigt returns Voigt's convolution
15
16 voigt(x,sigma,gamma) = integral G(t,sigma) L(x-t,gamma) dt
17
18 of a Gaussian
19
20 G(x,sigma) = 1/sqrt(2*pi)/|sigma| * exp(-x^2/2/sigma^2)
21
22 and a Lorentzian
23
24 L(x,gamma) = |gamma| / pi / ( x^2 + gamma^2 ),
25
26 with the integral extending from -infinity to +infinity.
27
28 If sigma=0, L(x,gamma) is returned. Conversely, if gamma=0, G(x,sigma)
29 is returned.
30
31 If sigma=gamma=0, the return value is Inf for x=0, and 0 for all other
32 x. It is advisable to test input arguments to exclude this irregular
33 case.
34
36 Formula (7.4.13) in Abramowitz & Stegun (1964) relates Voigt's
37 convolution integral to Faddeeva's function w_of_z, upon which this
38 implementation is based:
39
40 voigt(x,sigma,gamma) = Re[w(z)] / sqrt(2*pi) / |sigma|
41
42 with
43
44 z = (x+i*|gamma|) / sqrt(2) / |sigma|.
45
47 voigt_hwhm(3)
48
49 Related complex error functions: w_of_z(3), dawson(3), cerf(3),
50 erfcx(3), erfi(3).
51
52 Homepage: http://apps.jcns.fz-juelich.de/libcerf
53
55 Joachim Wuttke <j.wuttke@fz-juelich.de>, Forschungszentrum Juelich,
56 based on the w_of_z implementation by Steven G. Johnson,
57 http://math.mit.edu/~stevenj, Massachusetts Institute of Technology.
58
59 Please report bugs to the authors.
60
62 Copyright (c) 2013 Forschungszentrum Juelich GmbH
63
64 Software: MIT License.
65
66 This documentation: Creative Commons Attribution Share Alike.
67
68
69
70perl v5.30.1 builddir2:0:2b0u-i0l1d-:2:9BUILD::libcerf-v1.13::man::voigt(3)