1Complex(3) User Contributed Perl Documentation Complex(3)
2
3
4
6 PDL::Complex - handle complex numbers
7
9 use PDL;
10 use PDL::Complex;
11
13 This module features a growing number of functions manipulating complex
14 numbers. These are usually represented as a pair "[ real imag ]" or "[
15 magnitude phase ]". If not explicitly mentioned, the functions can work
16 inplace (not yet implemented!!!) and require rectangular form.
17
18 While there is a procedural interface available ("$x/$y*$c <=> Cmul
19 (Cdiv ($x, $y), $c)"), you can also opt to cast your pdl's into the
20 "PDL::Complex" datatype, which works just like your normal piddles, but
21 with all the normal perl operators overloaded.
22
23 The latter means that "sin($x) + $y/$c" will be evaluated using the
24 normal rules of complex numbers, while other pdl functions (like "max")
25 just treat the piddle as a real-valued piddle with a lowest dimension
26 of size 2, so "max" will return the maximum of all real and imaginary
27 parts, not the "highest" (for some definition)
28
30 · "i" is a constant exported by this module, which represents
31 "-1**0.5", i.e. the imaginary unit. it can be used to quickly and
32 conveniently write complex constants like this: "4+3*i".
33
34 · Use "r2C(real-values)" to convert from real to complex, as in "$r =
35 Cpow $cplx, r2C 2". The overloaded operators automatically do that
36 for you, all the other functions, do not. So "Croots 1, 5" will
37 return all the fifths roots of 1+1*i (due to threading).
38
39 · use "cplx(real-valued-piddle)" to cast from normal piddles into the
40 complex datatype. Use "real(complex-valued-piddle)" to cast back.
41 This requires a copy, though.
42
43 · This module has received some testing by Vanuxem Grégory (g.vanuxem
44 at wanadoo dot fr). Please report any other errors you come across!
45
47 The complex constant five is equal to "pdl(1,0)":
48
49 pdl> p $x = r2C 5
50 5 +0i
51
52 Now calculate the three cubic roots of of five:
53
54 pdl> p $r = Croots $x, 3
55 [1.70998 +0i -0.854988 +1.48088i -0.854988 -1.48088i]
56
57 Check that these really are the roots:
58
59 pdl> p $r ** 3
60 [5 +0i 5 -1.22465e-15i 5 -7.65714e-15i]
61
62 Duh! Could be better. Now try by multiplying $r three times with
63 itself:
64
65 pdl> p $r*$r*$r
66 [5 +0i 5 -4.72647e-15i 5 -7.53694e-15i]
67
68 Well... maybe "Cpow" (which is used by the "**" operator) isn't as bad
69 as I thought. Now multiply by "i" and negate, which is just a very
70 expensive way of swapping real and imaginary parts.
71
72 pdl> p -($r*i)
73 [0 -1.70998i 1.48088 +0.854988i -1.48088 +0.854988i]
74
75 Now plot the magnitude of (part of) the complex sine. First generate
76 the coefficients:
77
78 pdl> $sin = i * zeroes(50)->xlinvals(2,4) + zeroes(50)->xlinvals(0,7)
79
80 Now plot the imaginary part, the real part and the magnitude of the
81 sine into the same diagram:
82
83 pdl> use PDL::Graphics::Gnuplot
84 pdl> gplot( with => 'lines',
85 PDL::cat(im ( sin $sin ),
86 re ( sin $sin ),
87 abs( sin $sin ) ))
88
89 An ASCII version of this plot looks like this:
90
91 30 ++-----+------+------+------+------+------+------+------+------+-----++
92 + + + + + + + + + + +
93 | $$|
94 | $ |
95 25 ++ $$ ++
96 | *** |
97 | ** *** |
98 | $$* *|
99 20 ++ $** ++
100 | $$$* #|
101 | $$$ * # |
102 | $$ * # |
103 15 ++ $$$ * # ++
104 | $$$ ** # |
105 | $$$$ * # |
106 | $$$$ * # |
107 10 ++ $$$$$ * # ++
108 | $$$$$ * # |
109 | $$$$$$$ * # |
110 5 ++ $$$############ * # ++
111 |*****$$$### ### * # |
112 * #***** # * # |
113 | ### *** ### ** # |
114 0 ## *** # * # ++
115 | * # * # |
116 | *** # ** # |
117 | * # * # |
118 -5 ++ ** # * # ++
119 | *** ## ** # |
120 | * #* # |
121 | **** ***## # |
122 -10 ++ **** # # ++
123 | # # |
124 | ## ## |
125 + + + + + + + ### + ### + + +
126 -15 ++-----+------+------+------+------+------+-----###-----+------+-----++
127 0 5 10 15 20 25 30 35 40 45 50
128
130 The following operators are overloaded:
131
132 +, += (addition)
133 -, -= (subtraction)
134 *, *= (multiplication; Cmul)
135 /, /= (division; Cdiv)
136 **, **= (exponentiation; Cpow)
137 atan2 (4-quadrant arc tangent)
138 <=> (nonsensical comparison operator; Ccmp)
139 sin (Csin)
140 cos (Ccos)
141 exp (Cexp)
142 abs (Cabs)
143 log (Clog)
144 sqrt (Csqrt)
145 <, <=, ==, !=, >=, > (just as nonsensical as Ccmp)
146 ++, -- (increment, decrement; they affect the real part of the complex
147 number only)
148 "" (stringification)
149
151 cplx
152 Cast a real-valued piddle to the complex datatype.
153
154 The first dimension of the piddle must be of size 2. After this the
155 usual (complex) arithmetic operators are applied to this pdl, rather
156 than the normal elementwise pdl operators. Dataflow to the complex
157 parent works. Use "sever" on the result if you don't want this.
158
159 cplx($real_valued_pdl)
160
161 complex
162 Cast a real-valued piddle to the complex datatype without dataflow and
163 inplace.
164
165 Achieved by merely reblessing a piddle. The first dimension of the
166 piddle must be of size 2.
167
168 complex($real_valued_pdl)
169
170 real
171 Cast a complex valued pdl back to the "normal" pdl datatype.
172
173 Afterwards the normal elementwise pdl operators are used in operations.
174 Dataflow to the real parent works. Use "sever" on the result if you
175 don't want this.
176
177 real($cplx_valued_pdl)
178
179 r2C
180 Signature: (r(); [o]c(m=2))
181
182 convert real to complex, assuming an imaginary part of zero
183
184 r2C does not process bad values. It will set the bad-value flag of all
185 output piddles if the flag is set for any of the input piddles.
186
187 i2C
188 Signature: (r(); [o]c(m=2))
189
190 convert imaginary to complex, assuming a real part of zero
191
192 i2C does not process bad values. It will set the bad-value flag of all
193 output piddles if the flag is set for any of the input piddles.
194
195 Cr2p
196 Signature: (r(m=2); float+ [o]p(m=2))
197
198 convert complex numbers in rectangular form to polar (mod,arg) form.
199 Works inplace
200
201 Cr2p does not process bad values. It will set the bad-value flag of
202 all output piddles if the flag is set for any of the input piddles.
203
204 Cp2r
205 Signature: (r(m=2); [o]p(m=2))
206
207 convert complex numbers in polar (mod,arg) form to rectangular form.
208 Works inplace
209
210 Cp2r does not process bad values. It will set the bad-value flag of
211 all output piddles if the flag is set for any of the input piddles.
212
213 Cmul
214 Signature: (a(m=2); b(m=2); [o]c(m=2))
215
216 complex multiplication
217
218 Cmul does not process bad values. It will set the bad-value flag of
219 all output piddles if the flag is set for any of the input piddles.
220
221 Cprodover
222 Signature: (a(m=2,n); [o]c(m=2))
223
224 Project via product to N-1 dimension
225
226 Cprodover does not process bad values. It will set the bad-value flag
227 of all output piddles if the flag is set for any of the input piddles.
228
229 Cscale
230 Signature: (a(m=2); b(); [o]c(m=2))
231
232 mixed complex/real multiplication
233
234 Cscale does not process bad values. It will set the bad-value flag of
235 all output piddles if the flag is set for any of the input piddles.
236
237 Cdiv
238 Signature: (a(m=2); b(m=2); [o]c(m=2))
239
240 complex division
241
242 Cdiv does not process bad values. It will set the bad-value flag of
243 all output piddles if the flag is set for any of the input piddles.
244
245 Ccmp
246 Signature: (a(m=2); b(m=2); [o]c())
247
248 Complex comparison operator (spaceship).
249
250 Ccmp orders by real first, then by imaginary. Hm, but it is
251 mathematical nonsense! Complex numbers cannot be ordered.
252
253 Ccmp does not process bad values. It will set the bad-value flag of
254 all output piddles if the flag is set for any of the input piddles.
255
256 Cconj
257 Signature: (a(m=2); [o]c(m=2))
258
259 complex conjugation. Works inplace
260
261 Cconj does not process bad values. It will set the bad-value flag of
262 all output piddles if the flag is set for any of the input piddles.
263
264 Cabs
265 Signature: (a(m=2); [o]c())
266
267 complex "abs()" (also known as modulus)
268
269 Cabs does not process bad values. It will set the bad-value flag of
270 all output piddles if the flag is set for any of the input piddles.
271
272 Cabs2
273 Signature: (a(m=2); [o]c())
274
275 complex squared "abs()" (also known squared modulus)
276
277 Cabs2 does not process bad values. It will set the bad-value flag of
278 all output piddles if the flag is set for any of the input piddles.
279
280 Carg
281 Signature: (a(m=2); [o]c())
282
283 complex argument function ("angle")
284
285 Carg does not process bad values. It will set the bad-value flag of
286 all output piddles if the flag is set for any of the input piddles.
287
288 Csin
289 Signature: (a(m=2); [o]c(m=2))
290
291 sin (a) = 1/(2*i) * (exp (a*i) - exp (-a*i)). Works inplace
292
293 Csin does not process bad values. It will set the bad-value flag of
294 all output piddles if the flag is set for any of the input piddles.
295
296 Ccos
297 Signature: (a(m=2); [o]c(m=2))
298
299 cos (a) = 1/2 * (exp (a*i) + exp (-a*i)). Works inplace
300
301 Ccos does not process bad values. It will set the bad-value flag of
302 all output piddles if the flag is set for any of the input piddles.
303
304 Ctan
305 Complex tangent
306
307 tan (a) = -i * (exp (a*i) - exp (-a*i)) / (exp (a*i) + exp (-a*i))
308
309 Does not work inplace.
310
311 Cexp
312 Signature: (a(m=2); [o]c(m=2))
313
314 exp (a) = exp (real (a)) * (cos (imag (a)) + i * sin (imag (a))). Works inplace
315
316 Cexp does not process bad values. It will set the bad-value flag of
317 all output piddles if the flag is set for any of the input piddles.
318
319 Clog
320 Signature: (a(m=2); [o]c(m=2))
321
322 log (a) = log (cabs (a)) + i * carg (a). Works inplace
323
324 Clog does not process bad values. It will set the bad-value flag of
325 all output piddles if the flag is set for any of the input piddles.
326
327 Cpow
328 Signature: (a(m=2); b(m=2); [o]c(m=2))
329
330 complex "pow()" ("**"-operator)
331
332 Cpow does not process bad values. It will set the bad-value flag of
333 all output piddles if the flag is set for any of the input piddles.
334
335 Csqrt
336 Signature: (a(m=2); [o]c(m=2))
337
338 Works inplace
339
340 Csqrt does not process bad values. It will set the bad-value flag of
341 all output piddles if the flag is set for any of the input piddles.
342
343 Casin
344 Signature: (a(m=2); [o]c(m=2))
345
346 Works inplace
347
348 Casin does not process bad values. It will set the bad-value flag of
349 all output piddles if the flag is set for any of the input piddles.
350
351 Cacos
352 Signature: (a(m=2); [o]c(m=2))
353
354 Works inplace
355
356 Cacos does not process bad values. It will set the bad-value flag of
357 all output piddles if the flag is set for any of the input piddles.
358
359 Catan
360 Return the complex "atan()".
361
362 Does not work inplace.
363
364 Csinh
365 Signature: (a(m=2); [o]c(m=2))
366
367 sinh (a) = (exp (a) - exp (-a)) / 2. Works inplace
368
369 Csinh does not process bad values. It will set the bad-value flag of
370 all output piddles if the flag is set for any of the input piddles.
371
372 Ccosh
373 Signature: (a(m=2); [o]c(m=2))
374
375 cosh (a) = (exp (a) + exp (-a)) / 2. Works inplace
376
377 Ccosh does not process bad values. It will set the bad-value flag of
378 all output piddles if the flag is set for any of the input piddles.
379
380 Ctanh
381 Signature: (a(m=2); [o]c(m=2))
382
383 Works inplace
384
385 Ctanh does not process bad values. It will set the bad-value flag of
386 all output piddles if the flag is set for any of the input piddles.
387
388 Casinh
389 Signature: (a(m=2); [o]c(m=2))
390
391 Works inplace
392
393 Casinh does not process bad values. It will set the bad-value flag of
394 all output piddles if the flag is set for any of the input piddles.
395
396 Cacosh
397 Signature: (a(m=2); [o]c(m=2))
398
399 Works inplace
400
401 Cacosh does not process bad values. It will set the bad-value flag of
402 all output piddles if the flag is set for any of the input piddles.
403
404 Catanh
405 Signature: (a(m=2); [o]c(m=2))
406
407 Works inplace
408
409 Catanh does not process bad values. It will set the bad-value flag of
410 all output piddles if the flag is set for any of the input piddles.
411
412 Cproj
413 Signature: (a(m=2); [o]c(m=2))
414
415 compute the projection of a complex number to the riemann sphere. Works
416 inplace
417
418 Cproj does not process bad values. It will set the bad-value flag of
419 all output piddles if the flag is set for any of the input piddles.
420
421 Croots
422 Signature: (a(m=2); [o]c(m=2,n); int n => n)
423
424 Compute the "n" roots of "a". "n" must be a positive integer. The
425 result will always be a complex type!
426
427 Croots does not process bad values. It will set the bad-value flag of
428 all output piddles if the flag is set for any of the input piddles.
429
430 re, im
431 Return the real or imaginary part of the complex number(s) given.
432
433 These are slicing operators, so data flow works. The real and imaginary
434 parts are returned as piddles (ref eq PDL).
435
436 rCpolynomial
437 Signature: (coeffs(n); x(c=2,m); [o]out(c=2,m))
438
439 evaluate the polynomial with (real) coefficients "coeffs" at the
440 (complex) position(s) "x". "coeffs[0]" is the constant term.
441
442 rCpolynomial does not process bad values. It will set the bad-value
443 flag of all output piddles if the flag is set for any of the input
444 piddles.
445
447 Copyright (C) 2000 Marc Lehmann <pcg@goof.com>. All rights reserved.
448 There is no warranty. You are allowed to redistribute this software /
449 documentation as described in the file COPYING in the PDL distribution.
450
452 perl(1), PDL.
453
454
455
456perl v5.30.2 2020-04-02 Complex(3)