1gesolve(1) Utility Commands gesolve(1)
2
3
4
6 gesolve - eigensolver for generalized eigenvalue problems
7
8
10 gesolve matrix_a_filename matrix_b_filename evalues_filename evec‐
11 tors_filename residuals_filename iters_filename [options]
12
13
15 This program inputs the matrix data from matrix_a_filename
16 matrix_b_filename, and solves the generalized eigenvalue problem A*x =
17 l*B*x with the solver specified by options. It outputs the specified
18 number of eigenvalues, the number of which is given by option -ss, to
19 evalues_filename and the associated eigenvectors, residual norms, and
20 numbers of iterations to evectors_filename, residuals_filename, and
21 iters_filename respectively in the extended Matrix Market format (see
22 Appendix of Lis User Guide). Both the Matrix Market format and the Har‐
23 well-Boeing format are supported for the matrix filenames.
24
25
27 The following options are supported:
28
29 -e eigensolver
30 The following options are supported for eigensolver:
31
32 -e {gpi|9}
33 Generalized Power
34
35 -e {gii|10}
36 Generalized Inverse
37
38 -e {grqi|11}
39 Generalized Rayleigh Quotient
40
41 -e {gcg|12}
42 Generalized CR
43
44 -e {gcr|13}
45 Generalized CR
46
47 -e {gsi|14}
48 Generalized Subspace
49
50 -ss [1]
51 The size of the subspace
52
53 -e {gli|15}
54 Generalized Lanczos
55
56 -ss [1]
57 The size of the subspace
58
59 -e {gai|16}
60 Generalized Arnoldi
61
62 -ss [1]
63 The size of the subspace
64
65 -i linear solver
66 The following options are supported for inner linear solver:
67
68 -i {cg|1}
69 CG
70
71 -i {bicg|2}
72 BiCG
73
74 -i {cgs|3}
75 CGS
76
77 -i {bicgstab|4}
78 BiCGSTAB
79
80 -i {bicgstabl|5}
81 BiCGSTAB(l)
82
83 -ell [2]
84 The degree l
85
86 -i {gpbicg|6}
87 GPBiCG
88
89 -i {tfqmr|7}
90 TFQMR
91
92 -i {orthomin|8}
93 Orthomin(m)
94
95 -restart [40]
96 The restart value m
97
98 -i {gmres|9}
99 GMRES(m)
100
101 -restart [40]
102 The restart value m
103
104 -i {jacobi|10}
105 Jacobi
106
107 -i {gs|11}
108 Gauss-Seidel
109
110 -i {sor|12}
111 SOR
112
113 -omega [1.9]
114 The relaxation coefficient omega (0<omega<2)
115
116 -i {bicgsafe|13}
117 BiCGSafe
118
119 -i {cr|14}
120 CR
121
122 -i {bicr|15}
123 BiCR
124
125 -i {crs|16}
126 CRS
127
128 -i {bicrstab|17}
129 BiCRSTAB
130
131 -i {gpbicr|18}
132 GPBiCR
133
134 -i {bicrsafe|19}
135 BiCRSafe
136
137 -i {fgmres|20}
138 FGMRES(m)
139
140 -restart [40]
141 The restart value m
142
143 -i {idrs|21}
144 IDR(s)
145
146 -irestart [2]
147 The restart value s
148
149 -i {idr1|22}
150 IDR(1)
151
152 -i {minres|23}
153 MINRES
154
155 -i {cocg|24}
156 COCG
157
158 -i {cocr|25}
159 COCR
160
161
162 -p preconditioner
163 The following options are supported for preconditioner:
164
165 -p {none|0}
166 None
167
168 -p {jacobi|1}
169 Jacobi
170
171 -p {ilu|2}
172 ILU(k)
173
174 -ilu_fill [0]
175 The fill level k
176
177 -p {ssor|3}
178 SSOR
179
180 -ssor_omega [1.0]
181 The relaxation coefficient omega (0<omega<2)
182
183 -p {hybrid|4}
184 Hybrid
185
186 -hybrid_i [sor]
187 The linear solver
188
189 -hybrid_maxiter [25]
190 The maximum number of the iterations
191
192 -hybrid_tol [1.0e-3]
193 The convergence criterion
194
195 -hybrid_omega [1.5]
196 The relaxation coefficient omega of the SOR
197 (0<omega<2)
198
199 -hybrid_ell [2]
200 The degree l of the BiCGSTAB(l)
201
202 -hybrid_restart [40]
203 The restart values of the GMRES and Orthomin
204
205 -p {is|5}
206 I+S
207
208 -is_alpha [1.0]
209 The parameter alpha of I+alpha*S(m)
210
211 -is_m [3]
212 The parameter m of I+alpha*S(m)
213
214 -p {sainv|6}
215 SAINV
216
217 -sainv_drop [0.05]
218 The drop criterion
219
220 -p {saamg|7}
221 SA-AMG
222
223 -saamg_unsym [false]
224 Select the unsymmetric version (The matrix struc‐
225 ture must be symmetric)
226
227 -saamg_theta [0.05|0.12]
228 The drop criterion
229
230 -p {iluc|8}
231 Crout ILU
232
233 -iluc_drop [0.05]
234 The drop criterion
235
236 -iluc_rate [5.0]
237 The ration of maximum fill-in
238
239 -p {ilut|9}
240 ILUT
241
242 -ilut_drop [0.05]
243 The drop criterion
244
245 -ilut_rate [5.0]
246 The ration of maximum fill-in
247
248 -adds true
249 Additive Schwarz
250
251 -adds_iter [1]
252 The number of the iteration
253
254 Other Options for eigensolver:
255
256 -emaxiter [1000]
257 The maximum number of the iterations
258
259 -etol [1.0e-12]
260 The convergence criterion
261
262 -eprint [0]
263 The output of the residual history
264
265 -eprint {none|0}
266 None
267
268 -eprint {mem|1}
269 Save the residual history
270
271 -eprint {out|2}
272 Output it to the standard output
273
274 -eprint {all|3}
275 Save the residual history and output it to the standard
276 output
277
278 -ige [gii]
279 The inner eigensolver used in generalized Subspace, generalized
280 Lanczos, and generalized Arnoldi
281
282 -shift [0.0]
283 The amount of the shift
284
285 -initx_ones [true]
286 The behavior of the initial vector x_0
287
288 -initx_ones {false|0}
289 Given values
290
291 -initx_ones {true|1}
292 All values are set to 1
293
294 -omp_num_threads [t]
295 The number of the threads (t represents the maximum number of
296 the threads)
297
298 -estorage [0]
299 The matrix storage format
300
301 -estorage_block [2]
302 The block size of the BSR and BSC formats
303
304 -ef [0]
305 The precision of the eigensolver
306
307 -ef {double|0}
308 Double precision
309
310 -ef {quad|1}
311 Double-double (quadruple) precision
312
313 Other options for inner linear solver:
314
315 -maxiter [1000]
316 The maximum number of the iterations
317
318 -tol [1.0e-12]
319 The convergence criterion
320
321 -print [0]
322 The output of the residual history
323
324 -print {none|0}
325 None
326
327 -print {mem|1}
328 Save the residual history
329
330 -print {out|2}
331 Output it to the standard output
332
333 -print {all|3}
334 Save the residual history and output it to the standard
335 output
336
337 -scale [0]
338 The scaling
339
340 -scale {none|0}
341 No scaling
342
343 -scale {jacobi|1}
344 The Jacobi scaling
345
346 -scale {symm_diag|2}
347 The diagonal scaling
348
349 -initx_zeros [true]
350 The behavior of the initial vector x_0
351
352 -initx_zero {false|0}
353 Given values
354
355 -initx_zero {true|1}
356 All values are set to 0
357
358 -omp_num_threads [t]
359 The number of the threads (t represents the maximum number of
360 the threads)
361
362 -storage [0]
363 The matrix storage format
364
365 -storage_block [2]
366 The block size of the BSR and BSC formats
367
368 -f [0] The precision of the linear solver
369
370 -f {double|0}
371 Double precision
372
373 -f {quad|1}
374 Double-double (quadruple) precision
375
376 See Lis User Guide for full description.
377
378
380 The following exit values are returned:
381
382 0 The process is normally terminated
383
384 unspecified
385 An error occurred
386
387
389 lis(3), lsolve(1), hpcg_kernel(1), hpcg_spmvtest(1), spmvtest1(1),
390 spmvtest2(1), spmvtest2b(1), spmvtest3(1), spmvtest3b(1), spmvtest4(1),
391 spmvtest5(1)
392
393 http://www.ssisc.org/lis/
394 http://math.nist.gov/MatrixMarket/
395
396
397
398
399Man Page 4 Nov 2017 gesolve(1)