1Stdlib.Complex(3)                OCaml library               Stdlib.Complex(3)
2
3
4

NAME

6       Stdlib.Complex - no description
7

Module

9       Module   Stdlib.Complex
10

Documentation

12       Module Complex
13        : (module Stdlib__Complex)
14
15
16
17
18
19
20
21       type t = {
22        re : float ;
23        im : float ;
24        }
25
26
27       The  type of complex numbers.  re is the real part and im the imaginary
28       part.
29
30
31
32       val zero : t
33
34       The complex number 0 .
35
36
37
38       val one : t
39
40       The complex number 1 .
41
42
43
44       val i : t
45
46       The complex number i .
47
48
49
50       val neg : t -> t
51
52       Unary negation.
53
54
55
56       val conj : t -> t
57
58       Conjugate: given the complex x + i.y , returns x - i.y .
59
60
61
62       val add : t -> t -> t
63
64       Addition
65
66
67
68       val sub : t -> t -> t
69
70       Subtraction
71
72
73
74       val mul : t -> t -> t
75
76       Multiplication
77
78
79
80       val inv : t -> t
81
82       Multiplicative inverse ( 1/z ).
83
84
85
86       val div : t -> t -> t
87
88       Division
89
90
91
92       val sqrt : t -> t
93
94       Square root.  The result x + i.y is such that x > 0 or x = 0 and y >= 0
95       .  This function has a discontinuity along the negative real axis.
96
97
98
99       val norm2 : t -> float
100
101       Norm squared: given x + i.y , returns x^2 + y^2 .
102
103
104
105       val norm : t -> float
106
107       Norm: given x + i.y , returns sqrt(x^2 + y^2) .
108
109
110
111       val arg : t -> float
112
113       Argument.  The argument of a complex number is the angle in the complex
114       plane between the positive real axis and a line  passing  through  zero
115       and  the number.  This angle ranges from -pi to pi .  This function has
116       a discontinuity along the negative real axis.
117
118
119
120       val polar : float -> float -> t
121
122
123       polar norm arg returns the complex having norm norm and argument arg .
124
125
126
127       val exp : t -> t
128
129       Exponentiation.  exp z returns e to the z power.
130
131
132
133       val log : t -> t
134
135       Natural logarithm (in base e ).
136
137
138
139       val pow : t -> t -> t
140
141       Power function.  pow z1 z2 returns z1 to the z2 power.
142
143
144
145
146
147OCamldoc                          2022-02-04                 Stdlib.Complex(3)
Impressum