1lsolve(1) Utility Commands lsolve(1)
2
3
4
6 lsolve - linear solver for sparse matrices
7
8
10 lsolve matrix_filename rhs_setting solution_filename rhistory_filename
11 [options]
12
13
15 This program inputs the data of the coefficient matrix from
16 matrix_filename and solves the linear equation A*x = b with the solver
17 specified by options. It outputs the solution to solution_filename in
18 the extended Matrix Market format and the residual history to rhis‐
19 tory_filename in the PLAIN format (see Appendix of the Lis User Guide).
20 Both the extended Matrix Market format and the Harwell-Boeing format
21 are supported for the matrix filename.
22
23 One of the following values can be specified by rhs_setting:
24
25 0 Use the right hand side vector b included in matrix_filename
26
27 1 Use b = (1, ..., 1)^T
28
29 2 Use b = A * (1, ..., 1)^T
30
31 rhs_filename
32 The filename for the right-hand side vector
33
34 The PLAIN and Matrix Market formats are supported for rhs_filename.
35
36
38 The following options are supported:
39
40 -i linear solver
41 The following options are supported for linear solver:
42
43 -i {cg|1}
44 CG
45
46 -i {bicg|2}
47 BiCG
48
49 -i {cgs|3}
50 CGS
51
52 -i {bicgstab|4}
53 BiCGSTAB
54
55 -i {bicgstabl|5}
56 BiCGSTAB(l)
57
58 -ell [2]
59 The degree l
60
61 -i {gpbicg|6}
62 GPBiCG
63
64 -i {tfqmr|7}
65 TFQMR
66
67 -i {orthomin|8}
68 Orthomin(m)
69
70 -restart [40]
71 The restart value m
72
73 -i {gmres|9}
74 GMRES(m)
75
76 -restart [40]
77 The restart value m
78
79 -i {jacobi|10}
80 Jacobi
81
82 -i {gs|11}
83 Gauss-Seidel
84
85 -i {sor|12}
86 SOR
87
88 -omega [1.9]
89 The relaxation coefficient omega (0<omega<2)
90
91 -i {bicgsafe|13}
92 BiCGSafe
93
94 -i {cr|14}
95 CR
96
97 -i {bicr|15}
98 BiCR
99
100 -i {crs|16}
101 CRS
102
103 -i {bicrstab|17}
104 BiCRSTAB
105
106 -i {gpbicr|18}
107 GPBiCR
108
109 -i {bicrsafe|19}
110 BiCRSafe
111
112 -i {fgmres|20}
113 FGMRES(m)
114
115 -restart [40]
116 The restart value m
117
118 -i {idrs|21}
119 IDR(s)
120
121 -irestart [2]
122 The restart value s
123
124 -i {idr1|22}
125 IDR(1)
126
127 -i {minres|23}
128 MINRES
129
130 -i {COCG|24}
131 COCG
132
133 -i {COCR|25}
134 COCR
135
136
137 -p preconditioner
138 The following options are supported for preconditioner:
139
140 -p {none|0}
141 None
142
143 -p {jacobi|1}
144 Jacobi
145
146 -p {ilu|2}
147 ILU(k)
148
149 -ilu_fill [0]
150 The fill level k
151
152 -p {ssor|3}
153 SSOR
154
155 -ssor_omega [1.0]
156 The relaxation coefficient omega (0<omega<2)
157
158 -p {hybrid|4}
159 Hybrid
160
161 -hybrid_i [sor]
162 The linear solver
163
164 -hybrid_maxiter [25]
165 The maximum number of the iterations
166
167 -hybrid_tol [1.0e-3]
168 The convergence criterion
169
170 -hybrid_omega [1.5]
171 The relaxation coefficient omega of the SOR
172 (0<omega<2)
173
174 -hybrid_ell [2]
175 The degree l of the BiCGSTAB(l)
176
177 -hybrid_restart [40]
178 The restart values of the GMRES and Orthomin
179
180 -p {is|5}
181 I+S
182
183 -is_alpha [1.0]
184 The parameter alpha of I+alpha*S(m)
185
186 -is_m [3]
187 The parameter m of I+alpha*S(m)
188
189 -p {sainv|6}
190 SAINV
191
192 -sainv_drop [0.05]
193 The drop criterion
194
195 -p {saamg|7}
196 SA-AMG
197
198 -saamg_unsym [false]
199 Select the unsymmetric version (The matrix struc‐
200 ture must be symmetric)
201
202 -saamg_theta [0.05|0.12]
203 The drop criterion
204
205 -p {iluc|8}
206 Crout ILU
207
208 -iluc_drop [0.05]
209 The drop criterion
210
211 -iluc_rate [5.0]
212 The ration of maximum fill-in
213
214 -p {ilut|9}
215 ILUT
216
217 -ilut_drop [0.05]
218 The drop criterion
219
220 -ilut_rate [5.0]
221 The ration of maximum fill-in
222
223 -adds true
224 Additive Schwarz
225
226 -adds_iter [1]
227 The number of the iteration
228
229 Other Options:
230
231 -maxiter [1000]
232 The maximum number of the iterations
233
234 -tol [1.0e-12]
235 The convergence criterion
236
237 -print [0]
238 The output of the residual history
239
240 -print {none|0}
241 None
242
243 -print {mem|1}
244 Save the residual history
245
246 -print {out|2}
247 Output it to the standard output
248
249 -print {all|3}
250 Save the residual history and output it to the standard
251 output
252
253 -scale [0]
254 The scaling
255
256 -scale {none|0}
257 No scaling
258
259 -scale {jacobi|1}
260 The Jacobi scaling
261
262 -scale {symm_diag|2}
263 The diagonal scaling
264
265 -initx_zeros [true]
266 The behavior of the initial vector x_0
267
268 -initx_zero {false|0}
269 Given values
270
271 -initx_zero {true|1}
272 All values are set to 0
273
274 -omp_num_threads [t]
275 The number of the threads (t represents the maximum number of
276 the threads)
277
278 -storage [0]
279 The matrix storage format
280
281 -storage_block [2]
282 The block size of the BSR and BSC formats
283
284 -f [0] The precision of the linear solver
285
286 -f {double|0}
287 Double precision
288
289 -f {quad|1}
290 Double-double (quadruple) precision
291
292 See Lis User Guide for full description.
293
294
296 The following exit values are returned:
297
298 0 The process is normally terminated
299
300 unspecified
301 An error occurred
302
303
305 lis(3), esolve(1), hpcg_kernel(1), hpcg_spmvtest(1), spmvtest1(1),
306 spmvtest2(1), spmvtest2b(1), spmvtest3(1), spmvtest3b(1), spmvtest4(1),
307 spmvtest5(1)
308
309 http://www.ssisc.org/lis/
310 http://math.nist.gov/MatrixMarket/
311
312
313
314
315Man Page 14 Sep 2017 lsolve(1)