1bn_internal(3)                      OpenSSL                     bn_internal(3)
2
3
4

NAME

6       bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words,
7       bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8,
8       bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal,
9       bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive,
10       bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive,
11       bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top, bn_print,
12       bn_dump, bn_set_max, bn_set_high, bn_set_low - BIGNUM library internal
13       functions
14

SYNOPSIS

16        BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w);
17        BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num,
18          BN_ULONG w);
19        void     bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num);
20        BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
21        BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
22          int num);
23        BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
24          int num);
25
26        void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
27        void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
28        void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a);
29        void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a);
30
31        int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n);
32
33        void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
34          int nb);
35        void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
36        void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
37          int dna,int dnb,BN_ULONG *tmp);
38        void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
39          int n, int tna,int tnb, BN_ULONG *tmp);
40        void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
41          int n2, BN_ULONG *tmp);
42        void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l,
43          int n2, BN_ULONG *tmp);
44
45        void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
46        void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);
47
48        void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
49        void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
50        void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a);
51
52        BIGNUM *bn_expand(BIGNUM *a, int bits);
53        BIGNUM *bn_wexpand(BIGNUM *a, int n);
54        BIGNUM *bn_expand2(BIGNUM *a, int n);
55        void bn_fix_top(BIGNUM *a);
56
57        void bn_check_top(BIGNUM *a);
58        void bn_print(BIGNUM *a);
59        void bn_dump(BN_ULONG *d, int n);
60        void bn_set_max(BIGNUM *a);
61        void bn_set_high(BIGNUM *r, BIGNUM *a, int n);
62        void bn_set_low(BIGNUM *r, BIGNUM *a, int n);
63

DESCRIPTION

65       This page documents the internal functions used by the OpenSSL BIGNUM
66       implementation. They are described here to facilitate debugging and
67       extending the library. They are not to be used by applications.
68
69       The BIGNUM structure
70
71        typedef struct bignum_st
72               {
73               int top;      /* number of words used in d */
74               BN_ULONG *d;  /* pointer to an array containing the integer value */
75               int max;      /* size of the d array */
76               int neg;      /* sign */
77               } BIGNUM;
78
79       The integer value is stored in d, a malloc()ed array of words
80       (BN_ULONG), least significant word first. A BN_ULONG can be either 16,
81       32 or 64 bits in size, depending on the 'number of bits' (BITS2) speci‐
82       fied in "openssl/bn.h".
83
84       max is the size of the d array that has been allocated.  top is the
85       number of words being used, so for a value of 4, bn.d[0]=4 and
86       bn.top=1.  neg is 1 if the number is negative.  When a BIGNUM is 0, the
87       d field can be NULL and top == 0.
88
89       Various routines in this library require the use of temporary BIGNUM
90       variables during their execution.  Since dynamic memory allocation to
91       create BIGNUMs is rather expensive when used in conjunction with
92       repeated subroutine calls, the BN_CTX structure is used.  This struc‐
93       ture contains BN_CTX_NUM BIGNUMs, see BN_CTX_start(3).
94
95       Low-level arithmetic operations
96
97       These functions are implemented in C and for several platforms in
98       assembly language:
99
100       bn_mul_words(rp, ap, num, w) operates on the num word arrays rp and ap.
101       It computes ap * w, places the result in rp, and returns the high word
102       (carry).
103
104       bn_mul_add_words(rp, ap, num, w) operates on the num word arrays rp and
105       ap.  It computes ap * w + rp, places the result in rp, and returns the
106       high word (carry).
107
108       bn_sqr_words(rp, ap, n) operates on the num word array ap and the 2*num
109       word array ap.  It computes ap * ap word-wise, and places the low and
110       high bytes of the result in rp.
111
112       bn_div_words(h, l, d) divides the two word number (h,l) by d and
113       returns the result.
114
115       bn_add_words(rp, ap, bp, num) operates on the num word arrays ap, bp
116       and rp.  It computes ap + bp, places the result in rp, and returns the
117       high word (carry).
118
119       bn_sub_words(rp, ap, bp, num) operates on the num word arrays ap, bp
120       and rp.  It computes ap - bp, places the result in rp, and returns the
121       carry (1 if bp > ap, 0 otherwise).
122
123       bn_mul_comba4(r, a, b) operates on the 4 word arrays a and b and the 8
124       word array r.  It computes a*b and places the result in r.
125
126       bn_mul_comba8(r, a, b) operates on the 8 word arrays a and b and the 16
127       word array r.  It computes a*b and places the result in r.
128
129       bn_sqr_comba4(r, a, b) operates on the 4 word arrays a and b and the 8
130       word array r.
131
132       bn_sqr_comba8(r, a, b) operates on the 8 word arrays a and b and the 16
133       word array r.
134
135       The following functions are implemented in C:
136
137       bn_cmp_words(a, b, n) operates on the n word arrays a and b.  It
138       returns 1, 0 and -1 if a is greater than, equal and less than b.
139
140       bn_mul_normal(r, a, na, b, nb) operates on the na word array a, the nb
141       word array b and the na+nb word array r.  It computes a*b and places
142       the result in r.
143
144       bn_mul_low_normal(r, a, b, n) operates on the n word arrays r, a and b.
145       It computes the n low words of a*b and places the result in r.
146
147       bn_mul_recursive(r, a, b, n2, dna, dnb, t) operates on the word arrays
148       a and b of length n2+dna and n2+dnb (dna and dnb are currently allowed
149       to be 0 or negative) and the 2*n2 word arrays r and t.  n2 must be a
150       power of 2.  It computes a*b and places the result in r.
151
152       bn_mul_part_recursive(r, a, b, n, tna, tnb, tmp) operates on the word
153       arrays a and b of length n+tna and n+tnb and the 4*n word arrays r and
154       tmp.
155
156       bn_mul_low_recursive(r, a, b, n2, tmp) operates on the n2 word arrays r
157       and tmp and the n2/2 word arrays a and b.
158
159       bn_mul_high(r, a, b, l, n2, tmp) operates on the n2 word arrays r, a, b
160       and l (?) and the 3*n2 word array tmp.
161
162       BN_mul() calls bn_mul_normal(), or an optimized implementation if the
163       factors have the same size: bn_mul_comba8() is used if they are 8 words
164       long, bn_mul_recursive() if they are larger than BN_MULL_SIZE_NORMAL
165       and the size is an exact multiple of the word size, and
166       bn_mul_part_recursive() for others that are larger than
167       BN_MULL_SIZE_NORMAL.
168
169       bn_sqr_normal(r, a, n, tmp) operates on the n word array a and the 2*n
170       word arrays tmp and r.
171
172       The implementations use the following macros which, depending on the
173       architecture, may use "long long" C operations or inline assembler.
174       They are defined in "bn_lcl.h".
175
176       mul(r, a, w, c) computes w*a+c and places the low word of the result in
177       r and the high word in c.
178
179       mul_add(r, a, w, c) computes w*a+r+c and places the low word of the
180       result in r and the high word in c.
181
182       sqr(r0, r1, a) computes a*a and places the low word of the result in r0
183       and the high word in r1.
184
185       Size changes
186
187       bn_expand() ensures that b has enough space for a bits bit number.
188       bn_wexpand() ensures that b has enough space for an n word number.  If
189       the number has to be expanded, both macros call bn_expand2(), which
190       allocates a new d array and copies the data.  They return NULL on
191       error, b otherwise.
192
193       The bn_fix_top() macro reduces a->top to point to the most significant
194       non-zero word plus one when a has shrunk.
195
196       Debugging
197
198       bn_check_top() verifies that "((a)->top >= 0 && (a)->top <= (a)->max)".
199       A violation will cause the program to abort.
200
201       bn_print() prints a to stderr. bn_dump() prints n words at d (in
202       reverse order, i.e. most significant word first) to stderr.
203
204       bn_set_max() makes a a static number with a max of its current size.
205       This is used by bn_set_low() and bn_set_high() to make r a read-only
206       BIGNUM that contains the n low or high words of a.
207
208       If BN_DEBUG is not defined, bn_check_top(), bn_print(), bn_dump() and
209       bn_set_max() are defined as empty macros.
210

SEE ALSO

212       bn(3)
213
214
215
2160.9.8b                            2003-11-06                    bn_internal(3)
Impressum