1i.atcorr(1)                   Grass User's Manual                  i.atcorr(1)
2
3
4

NAME

6       i.atcorr   -   6s  - Second Simulation of Satellite Signal in the Solar
7       Spectrum.
8

KEYWORDS

SYNOPSIS

11       i.atcorr
12       i.atcorr help
13       i.atcorr [-frabo] iimg=name   [iscl=Input  scale  range]    [ialt=name]
14       [ivis=name]  icnd=name oimg=name oscl=Output scale range  [--overwrite]
15       [--verbose]  [--quiet]
16
17   Flags:
18       -f
19           Output raster is floating point
20
21       -r
22           Input map converted to reflectance (default is radiance)
23
24       -a
25           Input from ETM+ image taken after July 1, 2000
26
27       -b
28           Input from ETM+ image taken before July 1, 2000
29
30       -o
31           Try to increase computation speed when categorized altitude  or/and
32           visibility map is used.
33
34       --overwrite
35           Allow output files to overwrite existing files
36
37       --verbose
38           Verbose module output
39
40       --quiet
41           Quiet module output
42
43   Parameters:
44       iimg=name
45           Input imagery map to be corrected
46
47       iscl=Input scale range
48           Input imagery range [0,255]
49           Default: 0,255
50
51       ialt=name
52           Input altitude map in m (optional)
53           Default: dem_float
54
55       ivis=name
56           Input visibility map in km (optional)
57
58       icnd=name
59           6S input text file
60
61       oimg=name
62           6S output imagery map
63
64       oscl=Output scale range
65           Rescale output imagery map [0,255]
66           Default: 0,255
67

DESCRIPTION

69       i.atcorr  performs atmospheric correction on the input raster using the
70       6S algorithm (Second Simulation of Satellite Signal in the Solar  Spec‐
71       trum).  A  detailed algorithm description is available at the Land Sur‐
72       face Reflectance Science Computing Facility website and Mauro A.  Homem
73       Antunes       <a       href="http://www.ltid.inpe.br/dsr/mauro/6s/down
74       load_6s.html">website about his 6s version.
75
76       Current region settings are ignored. The region is  adjusted  to  cover
77       the  input  raster before the atmospheric correction is performed. This
78       should not affect the user's current region settings.
79
80       Because using a continuous elevation ialt or visibility ivis map  makes
81       execution  time  much  longer,  it  is  advised to use categorized maps
82       instead, in conjuction with flag -o. This flag tells  i.atcorr  to  try
83       and speedup calculations. However, this option under certain conditions
84       can make execution time longer.
85
86       If flag -r is used, the input data are treated as reflectance.   Other‐
87       wise,  the  input data are treated as radiance values and are converted
88       to reflectance at the i.atcorr runtime.  The  output  data  are  always
89       reflectance.
90
91       An example 6s parameters icnd file for i.atcorr:
92
93
94       8                            - geometrical conditions=Landsat ETM+
95       2  19  13.00  -47.410  -20.234   - month day hh.ddd longitude lattitude
96       ("hh.ddd" is a decimal hour GMT)
97       1                            - atmospheric mode=tropical
98       1                            - aerosols model=continental
99       15                           - visibility [km] (aerosol  model  concen‐
100       tration)
101       -.600                        - target at 600m above sea level
102       -1000                        - sensor on board a satellite
103       64                           - 4th band of ETM+ Landsat 7
104
105

REMAINING DOCUMENTATION ISSUES

107       1.  Using  the  target  elevation and visibility parameters in the icnd
108       file overrides ialt and ivis input rasters. It is not clear what to  do
109       to force i.atcorr to use the rasters instead though.
110
111       2.  The  "example  6s  parameters file" explains that "-.600" in line 6
112       means "target at 600 m ASL". However, in the  section  E  of  "6S  CODE
113       PARAMETER  CHOICES"  it reads: "xps <=0. means the target is at the sea
114       level". This is contrary.
115
116       3. In section E, I'm not sure if the "-100< xpp <0" shouldn't  actually
117       be "-1000< xpp <0". ?
118
119       4.  It  is  not  explained  what is the "iaer" parameter that section D
120       refers to.
121
122       5. Section D's "Aerosol model concentration" title could use  a  better
123       wording  I suppose. The current one seems to mean "the concentration of
124       the model of the aerosol". Should it be "Aerosol concentration model"?
125
126       6. It should be explained under what circumstances the use  of  catego‐
127       rized  maps  in  conjuction with flag -o can slow down the calculations
128       instead of speeding them up.
129
130       7. "This should not affect the user's current region  settings"  sounds
131       ambigious.
132

6S CODE PARAMETER CHOICES

134   A. Geometrical conditions:
135       | Code | Description | Details
136       |  1  |  meteosat observation | enter month,day,decimal hour (universal
137       time-hh.ddd)
138
139       n. of column,n. of line.(full scale 5000*2500)
140       | 2 | goes east observation | enter month,day,decimal  hour  (universal
141       time-hh.ddd)
142
143       n. of column,n. of line.(full scale 17000*12000)c
144       |  3  | goes west observation | enter month,day,decimal hour (universal
145       time-hh.ddd)
146
147       n. of column,n. of line.(full scale 17000*12000)
148       | 4 | avhrr (PM noaa) | enter month,day,decimal hour  (universal  time-
149       hh.ddd)
150
151       n. of column(1-2048),xlonan,hna
152
153       give long.(xlonan) and overpass hour (hna) at
154
155       the ascendant node at equator
156       |  5  | avhrr (AM noaa) | enter month,day,decimal hour (universal time-
157       hh.ddd)
158
159       n. of column(1-2048),xlonan,hna
160
161       give long.(xlonan) and overpass hour (hna) at
162
163       the ascendant node at equator
164       | 6 | hrv (spot) | enter month,day,hh.ddd,long.,lat. *
165       | 7 | tm (landsat) | enter month,day,hh.ddd,long.,lat. *
166       | 8 | etm+ (landsat7) | enter month,day,hh.ddd,long.,lat. * * NOTE: for
167       hrv,  tm  and etm+ experiments, longitude and lattitude are the coordi‐
168       nates of the scene center. Lattitude must be >0 for northern hemisphere
169       and 0 for eastern hemisphere and <0 for western.
170
171   B. Atmospheric model
172       | Code | Meaning
173       | 0 | no gaseous absorption
174       | 1 | tropical
175       | 2 | midlatitude summer
176       | 3 | midlatitude winter
177       | 4 | subarctic summer
178       | 5 | subarctic winter
179       | 6 | us standard 62
180       |  7  |  Define  your own atmospheric model as a set of the following 5
181       parameters per each measurement:
182       altitude [km]
183       pressure [mb]
184       temperature [k]
185       h2o density [g/m3]
186       o3 density [g/m3]
187       For example: there is one radiosonde measurement for each  altitude  of
188       0-25km at a step of 1km, one measurment for each altitude of 25-50km at
189       a step of 5km, and two  single  measurements  for  altitudes  70km  and
190       100km.  This  makes 34 measurments. In that case, there are 34*5 values
191       to input.
192       | 8 | Define your own atmospheric model providing values of  the  water
193       vapor and ozone content:
194       uw [g/cm2]
195       uo3 [cm-atm]
196        The profile is taken from us62.
197
198   C. Aerosols model
199       | Code | Meaning | Details
200       | 0 | no aerosols |
201       | 1 | continental model |
202       | 2 | maritime model |
203       | 3 | urban model |
204       | 4 | shettle model for background desert aerosol |
205       | 5 | biomass burning |
206       | 6 | stratospheric model |
207       | 7 | define your own model | Enter the volumic percentage of each com‐
208       ponent:
209       c(1) = volumic % of dust-like
210       c(2) = volumic % of water-soluble
211       c(3) = volumic % of oceanic
212       c(4) = volumic % of soot
213       All values between 0 and 1.
214       | 8 | define your own model | Size  distribution  function:  Multimodal
215       Log Normal (up to 4 modes).
216       |  9  |  define  your  own model | Size distribution function: Modified
217       gamma.
218       | 10 | define your own model | Size distribution function: Junge Power-
219       Law.
220       |  11  | define your own model | Sun-photometer measurements, 50 values
221       max, entered as:
222       r and d V / d (logr)
223       where r is the radius [micron], V  is  the  volume,  d  V  /  d  (logr)
224       [cm3/cm2/micron].
225       Followed by:
226       nr and ni for each wavelength
227       where  nr  and  ni  are respectively the real and imaginary part of the
228       refractive index.
229
230   D. Aerosol model concentration (visibility)
231       If you have an estimate of the meteorological parameter  visibility  v,
232       enter  directly  the value of v [km] (the aerosol optical depth will be
233       computed from a standard aerosol profile).
234
235       If you have an estimate of aerosol optical depth,  enter  v=0  for  the
236       visibility and enter the aerosol optical depth at 550nm.
237
238       NOTE: if iaer=0, enter v=-1.
239
240   E. Target altitude (xps), sensor platform (xpp)
241       xps <=0 means the target is at the sea level.
242       xps  >0  means you know the altitude of the target expressed in km, and
243       you put that value as xps.
244       xpp=-1000 means that the sensor is on board a satellite.
245       xpp=0 means that the sensor is at the ground level.
246       -100<xpp<0 means you know the altitude of the sensor expressed in kilo‐
247       meters; this altitude is relative to the target altitude.
248
249       For  aircraft  simulations  only  (xpp is neither 0 nor -1000): puw,po3
250       (water vapor content,ozone content between the aircraft  and  the  sur‐
251       face)
252       taerp  (the aerosol optical thickness at 550nm between the aircraft and
253       the surface)
254
255       If these data are not available, enter negative values for all of them.
256       puw,po3  will  then  be  interpolated  from  the  us62 standard profile
257       according to the values at the ground level.  taerp  will  be  computed
258       according to a 2km exponential profile for aerosol.
259
260   F. Sensor band
261       There are two possibilities: either define your own spectral conditions
262       (codes -2, -1, 0, or 1) or choose a code indicating the band of one  of
263       the pre-defined satellites.
264
265       Define your own spectral conditions:
266
267       | Code | Meaning
268       | -2 | Enter wlinf, wlsup.
269       The filter function will be equal to 1 over the whole band (as iwave=0)
270       but step by step output will be printed.
271       | -1 | Enter wl (monochr. cond, gaseous absorption is included).
272       | 0 | Enter wlinf, wlsup.
273       The filter function will be equal to 1over the whole band.
274       | 1 | Enter wlinf, wlsup and user's filter function s(lambda)  by  step
275       of 0.0025 micrometer.
276
277       Pre-defined satellite bands:
278
279            | Code    | Meaning
280            | 2  | meteosat vis band (0.350-1.110)
281            | 3  | goes east band vis (0.490-0.900)
282            | 4  | goes west band vis (0.490-0.900)
283            | 5  | avhrr (noaa6) band 1 (0.550-0.750)
284            | 6  | avhrr (noaa6) band 2 (0.690-1.120)
285            | 7  | avhrr (noaa7) band 1 (0.500-0.800)
286            | 8  | avhrr (noaa7) band 2 (0.640-1.170)
287            | 9  | avhrr (noaa8) band 1 (0.540-1.010)
288            | 10 | avhrr (noaa8) band 2 (0.680-1.120)
289            | 11 | avhrr (noaa9) band 1 (0.530-0.810)
290            | 12 | avhrr (noaa9) band 1 (0.680-1.170)
291            | 13 | avhrr (noaa10) band 1 (0.530-0.780)
292            | 14 | avhrr (noaa10) band 2 (0.600-1.190)
293            | 15 | avhrr (noaa11) band 1 (0.540-0.820)
294            | 16 | avhrr (noaa11) band 2 (0.600-1.120)
295            | 17 | hrv1 (spot1) band 1 (0.470-0.650)
296            | 18 | hrv1 (spot1) band 2 (0.600-0.720)
297            | 19 | hrv1 (spot1) band 3 (0.730-0.930)
298            | 20 | hrv1 (spot1) band pan (0.470-0.790)
299            | 21 | hrv2 (spot1) band 1 (0.470-0.650)
300            | 22 | hrv2 (spot1) band 2 (0.590-0.730)
301            | 23 | hrv2 (spot1) band 3 (0.740-0.940)
302            | 24 | hrv2 (spot1) band pan (0.470-0.790)
303            | 25 | tm (landsat5) band 1 (0.430-0.560)
304            | 26 | tm (landsat5) band 2 (0.500-0.650)
305            | 27 | tm (landsat5) band 3 (0.580-0.740)
306            | 28 | tm (landsat5) band 4 (0.730-0.950)
307            | 29 | tm (landsat5) band 5 (1.5025-1.890)
308            | 30 | tm (landsat5) band 7 (1.950-2.410)
309            | 31 | mss (landsat5) band 1 (0.475-0.640)
310            | 32 | mss (landsat5) band 2 (0.580-0.750)
311            | 33 | mss (landsat5) band 3 (0.655-0.855)
312            | 34 | mss (landsat5) band 4 (0.785-1.100)
313            | 35 | MAS (ER2) band 1 (0.5025-0.5875)
314            | 36 | MAS (ER2) band 2 (0.6075-0.7000)
315            | 37 | MAS (ER2) band 3 (0.8300-0.9125)
316            | 38 | MAS (ER2) band 4 (0.9000-0.9975)
317            | 39 | MAS (ER2) band 5 (1.8200-1.9575)
318            | 40 | MAS (ER2) band 6 (2.0950-2.1925)
319            | 41 | MAS (ER2) band 7 (3.5800-3.8700)
320            | 42 | MODIS band 1 (0.6100-0.6850)
321            | 43 | MODIS band 2 (0.8200-0.9025)
322            | 44 | MODIS band 3 (0.4500-0.4825)
323            | 45 | MODIS band 4 (0.5400-0.5700)
324            | 46 | MODIS band 5 (1.2150-1.2700)
325            | 47 | MODIS band 6 (1.6000-1.6650)
326            | 48 | MODIS band 7 (2.0575-2.1825)
327            | 49 | avhrr (noaa12) band 1 (0.500-1.000)
328            | 50 | avhrr (noaa12) band 2 (0.650-1.120)
329            | 51 | avhrr (noaa14) band 1 (0.500-1.110)
330            | 52 | avhrr (noaa14) band 2 (0.680-1.100)
331            | 53 | POLDER band 1 (0.4125-0.4775)
332            | 54 | POLDER band 2 (non polar) (0.4100-0.5225)
333            | 55 | POLDER band 3 (non polar) (0.5325-0.5950)
334            | 56 | POLDER band 4 P1 (0.6300-0.7025)
335            | 57 | POLDER band 5 (non polar) (0.7450-0.7800)
336            | 58 | POLDER band 6 (non polar) (0.7000-0.8300)
337            | 59 | POLDER band 7 P1 (0.8100-0.9200)
338            | 60 | POLDER band 8 (non polar) (0.8650-0.9400)
339            | 61 | etm+ (landsat7) band 1 (0.435-0.520)
340            | 62 | etm+ (landsat7) band 2 (0.506-0.621)
341            | 63 | etm+ (landsat7) band 3 (0.622-0.702)
342            | 64 | etm+ (landsat7) band 4 (0.751-0.911)
343            | 65 | etm+ (landsat7) band 5 (1.512-1.792)
344            | 66 | etm+ (landsat7) band 7 (2.020-2.380)
345            | 67 | etm+ (landsat7) band 8 (0.504-0.909)
346

AUTHORS

348       Original version of the program for GRASS 5:
349       Christo Zietsman, 13422863(at)sun.ac.za
350
351       Code clean-up and port to GRASS 6.3, 15.12.2006:
352       Yann Chemin, ychemin(at)gmail.com
353

REFERENCES

355       Vermote, E.F., Tanre, D., Deuze, J.L., Herman, M., and Morcrette, J.J.,
356       1997, Second simulation of the satellite signal in the solar  spectrum,
357       6S: An overview., IEEE Trans. Geosc. and Remote Sens. 35(3):675-686.
358
359       6s homepage of the Land Surface Reflectance Science Computing Facility
360
361       Mauro A. Homem Antunes website about his 6s version
362
363       Last changed: $Date: 2007-09-07 19:38:42 +0200 (Fri, 07 Sep 2007) $
364
365       Full index
366
367       © 2003-2008 GRASS Development Team
368
369
370
371GRASS 6.3.0                                                        i.atcorr(1)
Impressum