1mlpack_softmax_regression(1)     User Commands    mlpack_softmax_regression(1)
2
3
4

NAME

6       mlpack_softmax_regression - softmax regression
7

SYNOPSIS

9        mlpack_softmax_regression [-m unknown] [-l string] [-r double] [-n int] [-N bool] [-c int] [-T string] [-L string] [-t string] [-V bool] [-M unknown] [-p string] [-h -v]
10

DESCRIPTION

12       This  program performs softmax regression, a generalization of logistic
13       regression to the multiclass case, and has support for  L2  regulariza‐
14       tion. The program is able to train a model, load an existing model, and
15       give predictions (and optionally their accuracy) for test data.
16
17       Training a softmax regression model is done by giving a file of  train‐
18       ing  points  with the '--training_file (-t)' parameter and their corre‐
19       sponding labels with the '--labels_file (-l)' parameter. The number  of
20       classes  can  be manually specified with the '--number_of_classes (-c)'
21       parameter, and the maximum number of iterations of the L-BFGS optimizer
22       can  be  specified  with  the ’--max_iterations (-n)' parameter. The L2
23       regularization constant can  be  specified  with  the  '--lambda  (-r)'
24       parameter  and  if  an  intercept term is not desired in the model, the
25       '--no_intercept (-N)' parameter can be specified.
26
27       The trained model can be saved with the '--output_model_file (-M)' out‐
28       put parameter. If training is not desired, but only testing is, a model
29       can be loaded with the '--input_model_file (-m)' parameter. At the cur‐
30       rent time, a loaded model cannot be trained further, so specifying both
31       '--input_model_file (-m)' and '--training_file (-t)' is not allowed.
32
33       The program is also able to evaluate a  model  on  test  data.  A  test
34       dataset  can  be specified with the '--test_file (-T)' parameter. Class
35       predictions can be saved  with  the  '--predictions_file  (-p)'  output
36       parameter.  If  labels  are  specified  for  the  test  data  with  the
37       '--test_labels_file (-L)' parameter, then the program  will  print  the
38       accuracy of the predictions on the given test set and its corresponding
39       labels.
40
41       For  example,  to  train  a  softmax  regression  model  on  the   data
42       'dataset.csv'  with  labels  'labels.csv' with a maximum of 1000 itera‐
43       tions for training, saving the trained  model  to  'sr_model.bin',  the
44       following command can be used:
45
46       $    softmax_regression   --training_file   dataset.csv   --labels_file
47       labels.csv --output_model_file sr_model.bin
48
49       Then,  to  use  'sr_model.bin'  to  classify   the   test   points   in
50       'test_points.csv',  saving the output predictions to 'predictions.csv',
51       the following command can be used:
52
53       $  softmax_regression   --input_model_file   sr_model.bin   --test_file
54       test_points.csv --predictions_file predictions.csv
55

OPTIONAL INPUT OPTIONS

57       --help (-h) [bool]
58              Default help info.
59
60       --info [string]
61              Get help on a specific module or option.  Default value ''.
62
63       --input_model_file (-m) [unknown]
64              File containing existing model (parameters).  Default value ''.
65
66       --labels_file (-l) [string]
67              A matrix containing labels (0 or 1) for the points in the train‐
68              ing set (y). The labels must order as a row. Default value ''.
69
70       --lambda (-r) [double]
71              L2-regularization constant Default value 0.0001.
72
73       --max_iterations (-n) [int]
74              Maximum number of iterations before termination.  Default  value
75              400.
76
77       --no_intercept (-N) [bool]
78              Do not add the intercept term to the model.
79
80       --number_of_classes (-c) [int]
81              Number of classes for classification; if unspecified (or 0), the
82              number of classes found in the  labels  will  be  used.  Default
83              value 0.
84
85       --test_file (-T) [string]
86              Matrix containing test dataset. Default value ''.
87
88       --test_labels_file (-L) [string]
89              Matrix containing test labels. Default value ''.
90
91       --training_file (-t) [string]
92              A  matrix containing the training set (the matrix of predictors,
93              X). Default value ''.
94
95       --verbose (-v) [bool]
96              Display informational messages and the full list  of  parameters
97              and timers at the end of execution.
98
99       --version (-V) [bool]
100              Display the version of mlpack.
101

OPTIONAL OUTPUT OPTIONS

103       --output_model_file (-M) [unknown]
104              File  to save trained softmax regression model to. Default value
105              ''.
106
107       --predictions_file (-p) [string]
108              Matrix to save predictions for test dataset into. Default  value
109              ''.
110

ADDITIONAL INFORMATION

112       For further information, including relevant papers, citations, and the‐
113       ory,  consult  the  documentation  found  at  http://www.mlpack.org  or
114       included with your distribution of mlpack.
115
116
117
118mlpack-3.0.4                   21 February 2019   mlpack_softmax_regression(1)
Impressum