1RNG(3)                User Contributed Perl Documentation               RNG(3)
2
3
4

NAME

6       PDL::GSL::RNG - PDL interface to RNG and randist routines in GSL
7

DESCRIPTION

9       This is an interface to the rng and randist packages present in the GNU
10       Scientific Library.
11

SYNOPSIS

13          use PDL;
14          use PDL::GSL::RNG;
15
16          $rng = PDL::GSL::RNG->new('taus');
17
18          $rng->set_seed(time());
19
20          $x=zeroes(5,5,5)
21
22          $rng->get_uniform($x); # inplace
23
24          $y=$rng->get_uniform(3,4,5); # creates new pdl
25

NOMENCLATURE

27       Throughout this documentation we strive to use the same variables that
28       are present in the original GSL documentation (see See Also).
29       Oftentimes those variables are called "a" and "b". Since good Perl
30       coding practices discourage the use of Perl variables $a and $b, here
31       we refer to Parameters "a" and "b" as $pa and $pb, respectively, and
32       Limits (of domain or integration) as $la and $lb.
33

FUNCTIONS

35   new
36       The new method initializes a new instance of the RNG.
37
38       The available RNGs are:
39
40        coveyou cmrg fishman18 fishman20 fishman2x gfsr4 knuthran
41        knuthran2 knuthran2002 lecuyer21 minstd mrg mt19937 mt19937_1999
42        mt19937_1998 r250 ran0 ran1 ran2 ran3 rand rand48 random128_bsd
43        random128_glibc2 random128_libc5 random256_bsd random256_glibc2
44        random256_libc5 random32_bsd random32_glibc2 random32_libc5
45        random64_bsd random64_glibc2 random64_libc5 random8_bsd
46        random8_glibc2 random8_libc5 random_bsd random_glibc2
47        random_libc5 randu ranf ranlux ranlux389 ranlxd1 ranlxd2 ranlxs0
48        ranlxs1 ranlxs2 ranmar slatec taus taus2 taus113 transputer tt800
49        uni uni32 vax waterman14 zuf default
50
51       The last one (default) uses the environment variable GSL_RNG_TYPE.
52
53       Note that only a few of these rngs are recommended for general use.
54       Please check the GSL documentation for more information.
55
56       Usage:
57
58          $blessed_ref = PDL::GSL::RNG->new($RNG_name);
59
60       Example:
61
62          $rng = PDL::GSL::RNG->new('taus');
63
64   set_seed
65       Sets the RNG seed.
66
67       Usage:
68
69          $rng->set_seed($integer);
70          # or
71          $rng = PDL::GSL::RNG->new('taus')->set_seed($integer);
72
73       Example:
74
75          $rng->set_seed(666);
76
77   min
78       Return the minimum value generable by this RNG.
79
80       Usage:
81
82          $integer = $rng->min();
83
84       Example:
85
86          $min = $rng->min(); $max = $rng->max();
87
88   max
89       Return the maximum value generable by the RNG.
90
91       Usage:
92
93          $integer = $rng->max();
94
95       Example:
96
97          $min = $rng->min(); $max = $rng->max();
98
99   name
100       Returns the name of the RNG.
101
102       Usage:
103
104          $string = $rng->name();
105
106       Example:
107
108          $name = $rng->name();
109
110   get
111       This function creates a piddle with given dimensions or accepts an
112       existing piddle and fills it. get() returns integer values between a
113       minimum and a maximum specific to every RNG.
114
115       Usage:
116
117          $piddle = $rng->get($list_of_integers)
118          $rng->get($piddle);
119
120       Example:
121
122          $x = zeroes 5,6;
123          $o = $rng->get(10,10); $rng->get($x);
124
125   get_int
126       This function creates a piddle with given dimensions or accepts an
127       existing piddle and fills it. get_int() returns integer values between
128       0 and $max.
129
130       Usage:
131
132          $piddle = $rng->get($max, $list_of_integers)
133          $rng->get($max, $piddle);
134
135       Example:
136
137          $x = zeroes 5,6; $max=100;
138          $o = $rng->get(10,10); $rng->get($x);
139
140   get_uniform
141       This function creates a piddle with given dimensions or accepts an
142       existing piddle and fills it. get_uniform() returns values 0<=x<1,
143
144       Usage:
145
146          $piddle = $rng->get_uniform($list_of_integers)
147          $rng->get_uniform($piddle);
148
149       Example:
150
151          $x = zeroes 5,6; $max=100;
152          $o = $rng->get_uniform(10,10); $rng->get_uniform($x);
153
154   get_uniform_pos
155       This function creates a piddle with given dimensions or accepts an
156       existing piddle and fills it. get_uniform_pos() returns values 0<x<1,
157
158       Usage:
159
160          $piddle = $rng->get_uniform_pos($list_of_integers)
161          $rng->get_uniform_pos($piddle);
162
163       Example:
164
165          $x = zeroes 5,6;
166          $o = $rng->get_uniform_pos(10,10); $rng->get_uniform_pos($x);
167
168   ran_shuffle
169       Shuffles values in piddle
170
171       Usage:
172
173          $rng->ran_shuffle($piddle);
174
175   ran_shuffle_vec
176       Shuffles values in piddle
177
178       Usage:
179
180          $rng->ran_shuffle_vec(@vec);
181
182   ran_choose
183       Chooses values from $inpiddle to $outpiddle.
184
185       Usage:
186
187          $rng->ran_choose($inpiddle,$outpiddle);
188
189   ran_choose_vec
190       Chooses $n values from @vec.
191
192       Usage:
193
194          @chosen = $rng->ran_choose_vec($n,@vec);
195
196   ran_gaussian
197       Fills output piddle with random values from Gaussian distribution with
198       mean zero and standard deviation $sigma.
199
200       Usage:
201
202        $piddle = $rng->ran_gaussian($sigma,[list of integers = output piddle dims]);
203        $rng->ran_gaussian($sigma, $output_piddle);
204
205       Example:
206
207         $o = $rng->ran_gaussian($sigma,10,10);
208         $rng->ran_gaussian($sigma,$o);
209
210   ran_gaussian_var
211       This method is similar to ran_gaussian except that it takes the
212       parameters of the distribution as a piddle and returns a piddle of
213       equal dimensions.
214
215       Usage:
216
217          $piddle = $rng->ran_gaussian_var($sigma_piddle);
218          $rng->ran_gaussian_var($sigma_piddle, $output_piddle);
219
220       Example:
221
222          $sigma_pdl = rvals zeroes 11,11;
223          $o = $rng->ran_gaussian_var($sigma_pdl);
224
225   ran_additive_gaussian
226       Add Gaussian noise of given sigma to a piddle.
227
228       Usage:
229
230          $rng->ran_additive_gaussian($sigma,$piddle);
231
232       Example:
233
234          $rng->ran_additive_gaussian(1,$image);
235
236   ran_bivariate_gaussian
237       Generates $n bivariate gaussian random deviates.
238
239       Usage:
240
241          $piddle = $rng->ran_bivariate_gaussian($sigma_x,$sigma_y,$rho,$n);
242
243       Example:
244
245          $o = $rng->ran_bivariate_gaussian(1,2,0.5,1000);
246
247   ran_poisson
248       Fills output piddle by with random integer values from the Poisson
249       distribution with mean $mu.
250
251       Usage:
252
253          $piddle = $rng->ran_poisson($mu,[list of integers = output piddle dims]);
254          $rng->ran_poisson($mu,$output_piddle);
255
256   ran_poisson_var
257       Similar to ran_poisson except that it takes the distribution parameters
258       as a piddle and returns a piddle of equal dimensions.
259
260       Usage:
261
262          $piddle = $rng->ran_poisson_var($mu_piddle);
263
264   ran_additive_poisson
265       Add Poisson noise of given $mu to a $piddle.
266
267       Usage:
268
269          $rng->ran_additive_poisson($mu,$piddle);
270
271       Example:
272
273          $rng->ran_additive_poisson(1,$image);
274
275   ran_feed_poisson
276       This method simulates shot noise, taking the values of piddle as values
277       for $mu to be fed in the poissonian RNG.
278
279       Usage:
280
281          $rng->ran_feed_poisson($piddle);
282
283       Example:
284
285          $rng->ran_feed_poisson($image);
286
287   ran_bernoulli
288       Fills output piddle with random values 0 or 1, the result of a
289       Bernoulli trial with probability $p.
290
291       Usage:
292
293          $piddle = $rng->ran_bernoulli($p,[list of integers = output piddle dims]);
294          $rng->ran_bernoulli($p,$output_piddle);
295
296   ran_bernoulli_var
297       Similar to ran_bernoulli except that it takes the distribution
298       parameters as a piddle and returns a piddle of equal dimensions.
299
300       Usage:
301
302          $piddle = $rng->ran_bernoulli_var($p_piddle);
303
304   ran_beta
305       Fills output piddle with random variates from the beta distribution
306       with parameters $pa and $pb.
307
308       Usage:
309
310          $piddle = $rng->ran_beta($pa,$pb,[list of integers = output piddle dims]);
311          $rng->ran_beta($pa,$pb,$output_piddle);
312
313   ran_beta_var
314       Similar to ran_beta except that it takes the distribution parameters as
315       a piddle and returns a piddle of equal dimensions.
316
317       Usage:
318
319          $piddle = $rng->ran_beta_var($a_piddle, $b_piddle);
320
321   ran_binomial
322       Fills output piddle with random integer values from the binomial
323       distribution, the number of successes in $n independent trials with
324       probability $p.
325
326       Usage:
327
328          $piddle = $rng->ran_binomial($p,$n,[list of integers = output piddle dims]);
329          $rng->ran_binomial($p,$n,$output_piddle);
330
331   ran_binomial_var
332       Similar to ran_binomial except that it takes the distribution
333       parameters as a piddle and returns a piddle of equal dimensions.
334
335       Usage:
336
337          $piddle = $rng->ran_binomial_var($p_piddle, $n_piddle);
338
339   ran_cauchy
340       Fills output piddle with random variates from the Cauchy distribution
341       with scale parameter $pa.
342
343       Usage:
344
345          $piddle = $rng->ran_cauchy($pa,[list of integers = output piddle dims]);
346          $rng->ran_cauchy($pa,$output_piddle);
347
348   ran_cauchy_var
349       Similar to ran_cauchy except that it takes the distribution parameters
350       as a piddle and returns a piddle of equal dimensions.
351
352       Usage:
353
354          $piddle = $rng->ran_cauchy_var($a_piddle);
355
356   ran_chisq
357       Fills output piddle with random variates from the chi-squared
358       distribution with $nu degrees of freedom.
359
360       Usage:
361
362          $piddle = $rng->ran_chisq($nu,[list of integers = output piddle dims]);
363          $rng->ran_chisq($nu,$output_piddle);
364
365   ran_chisq_var
366       Similar to ran_chisq except that it takes the distribution parameters
367       as a piddle and returns a piddle of equal dimensions.
368
369       Usage:
370
371          $piddle = $rng->ran_chisq_var($nu_piddle);
372
373   ran_exponential
374       Fills output piddle with random variates from the exponential
375       distribution with mean $mu.
376
377       Usage:
378
379          $piddle = $rng->ran_exponential($mu,[list of integers = output piddle dims]);
380          $rng->ran_exponential($mu,$output_piddle);
381
382   ran_exponential_var
383       Similar to ran_exponential except that it takes the distribution
384       parameters as a piddle and returns a piddle of equal dimensions.
385
386       Usage:
387
388          $piddle = $rng->ran_exponential_var($mu_piddle);
389
390   ran_exppow
391       Fills output piddle with random variates from the exponential power
392       distribution with scale parameter $pa and exponent $pb.
393
394       Usage:
395
396          $piddle = $rng->ran_exppow($pa,$pb,[list of integers = output piddle dims]);
397          $rng->ran_exppow($pa,$pb,$output_piddle);
398
399   ran_exppow_var
400       Similar to ran_exppow except that it takes the distribution parameters
401       as a piddle and returns a piddle of equal dimensions.
402
403       Usage:
404
405          $piddle = $rng->ran_exppow_var($a_piddle, $b_piddle);
406
407   ran_fdist
408       Fills output piddle with random variates from the F-distribution with
409       degrees of freedom $nu1 and $nu2.
410
411       Usage:
412
413          $piddle = $rng->ran_fdist($nu1, $nu2,[list of integers = output piddle dims]);
414          $rng->ran_fdist($nu1, $nu2,$output_piddle);
415
416   ran_fdist_var
417       Similar to ran_fdist except that it takes the distribution parameters
418       as a piddle and returns a piddle of equal dimensions.
419
420       Usage:
421
422          $piddle = $rng->ran_fdist_var($nu1_piddle, $nu2_piddle);
423
424   ran_flat
425       Fills output piddle with random variates from the flat (uniform)
426       distribution from $la to $lb.
427
428       Usage:
429
430          $piddle = $rng->ran_flat($la,$lb,[list of integers = output piddle dims]);
431          $rng->ran_flat($la,$lb,$output_piddle);
432
433   ran_flat_var
434       Similar to ran_flat except that it takes the distribution parameters as
435       a piddle and returns a piddle of equal dimensions.
436
437       Usage:
438
439          $piddle = $rng->ran_flat_var($a_piddle, $b_piddle);
440
441   ran_gamma
442       Fills output piddle with random variates from the gamma distribution.
443
444       Usage:
445
446          $piddle = $rng->ran_gamma($pa,$pb,[list of integers = output piddle dims]);
447          $rng->ran_gamma($pa,$pb,$output_piddle);
448
449   ran_gamma_var
450       Similar to ran_gamma except that it takes the distribution parameters
451       as a piddle and returns a piddle of equal dimensions.
452
453       Usage:
454
455          $piddle = $rng->ran_gamma_var($a_piddle, $b_piddle);
456
457   ran_geometric
458       Fills output piddle with random integer values from the geometric
459       distribution, the number of independent trials with probability $p
460       until the first success.
461
462       Usage:
463
464          $piddle = $rng->ran_geometric($p,[list of integers = output piddle dims]);
465          $rng->ran_geometric($p,$output_piddle);
466
467   ran_geometric_var
468       Similar to ran_geometric except that it takes the distribution
469       parameters as a piddle and returns a piddle of equal dimensions.
470
471       Usage:
472
473          $piddle = $rng->ran_geometric_var($p_piddle);
474
475   ran_gumbel1
476       Fills output piddle with random variates from the Type-1 Gumbel
477       distribution.
478
479       Usage:
480
481          $piddle = $rng->ran_gumbel1($pa,$pb,[list of integers = output piddle dims]);
482          $rng->ran_gumbel1($pa,$pb,$output_piddle);
483
484   ran_gumbel1_var
485       Similar to ran_gumbel1 except that it takes the distribution parameters
486       as a piddle and returns a piddle of equal dimensions.
487
488       Usage:
489
490          $piddle = $rng->ran_gumbel1_var($a_piddle, $b_piddle);
491
492   ran_gumbel2
493       Fills output piddle with random variates from the Type-2 Gumbel
494       distribution.
495
496       Usage:
497
498          $piddle = $rng->ran_gumbel2($pa,$pb,[list of integers = output piddle dims]);
499          $rng->ran_gumbel2($pa,$pb,$output_piddle);
500
501   ran_gumbel2_var
502       Similar to ran_gumbel2 except that it takes the distribution parameters
503       as a piddle and returns a piddle of equal dimensions.
504
505       Usage:
506
507          $piddle = $rng->ran_gumbel2_var($a_piddle, $b_piddle);
508
509   ran_hypergeometric
510       Fills output piddle with random integer values from the hypergeometric
511       distribution.  If a population contains $n1 elements of type 1 and $n2
512       elements of type 2 then the hypergeometric distribution gives the
513       probability of obtaining $x elements of type 1 in $t samples from the
514       population without replacement.
515
516       Usage:
517
518          $piddle = $rng->ran_hypergeometric($n1, $n2, $t,[list of integers = output piddle dims]);
519          $rng->ran_hypergeometric($n1, $n2, $t,$output_piddle);
520
521   ran_hypergeometric_var
522       Similar to ran_hypergeometric except that it takes the distribution
523       parameters as a piddle and returns a piddle of equal dimensions.
524
525       Usage:
526
527          $piddle = $rng->ran_hypergeometric_var($n1_piddle, $n2_piddle, $t_piddle);
528
529   ran_laplace
530       Fills output piddle with random variates from the Laplace distribution
531       with width $pa.
532
533       Usage:
534
535          $piddle = $rng->ran_laplace($pa,[list of integers = output piddle dims]);
536          $rng->ran_laplace($pa,$output_piddle);
537
538   ran_laplace_var
539       Similar to ran_laplace except that it takes the distribution parameters
540       as a piddle and returns a piddle of equal dimensions.
541
542       Usage:
543
544          $piddle = $rng->ran_laplace_var($a_piddle);
545
546   ran_levy
547       Fills output piddle with random variates from the Levy symmetric stable
548       distribution with scale $c and exponent $alpha.
549
550       Usage:
551
552          $piddle = $rng->ran_levy($mu,$x,[list of integers = output piddle dims]);
553          $rng->ran_levy($mu,$x,$output_piddle);
554
555   ran_levy_var
556       Similar to ran_levy except that it takes the distribution parameters as
557       a piddle and returns a piddle of equal dimensions.
558
559       Usage:
560
561          $piddle = $rng->ran_levy_var($mu_piddle, $a_piddle);
562
563   ran_logarithmic
564       Fills output piddle with random integer values from the logarithmic
565       distribution.
566
567       Usage:
568
569          $piddle = $rng->ran_logarithmic($p,[list of integers = output piddle dims]);
570          $rng->ran_logarithmic($p,$output_piddle);
571
572   ran_logarithmic_var
573       Similar to ran_logarithmic except that it takes the distribution
574       parameters as a piddle and returns a piddle of equal dimensions.
575
576       Usage:
577
578          $piddle = $rng->ran_logarithmic_var($p_piddle);
579
580   ran_logistic
581       Fills output piddle with random random variates from the logistic
582       distribution.
583
584       Usage:
585
586          $piddle = $rng->ran_logistic($m,[list of integers = output piddle dims]u)
587          $rng->ran_logistic($m,$output_piddle)
588
589   ran_logistic_var
590       Similar to ran_logistic except that it takes the distribution
591       parameters as a piddle and returns a piddle of equal dimensions.
592
593       Usage:
594
595          $piddle = $rng->ran_logistic_var($m_piddle);
596
597   ran_lognormal
598       Fills output piddle with random variates from the lognormal
599       distribution with parameters $mu (location) and $sigma (scale).
600
601       Usage:
602
603          $piddle = $rng->ran_lognormal($mu,$sigma,[list of integers = output piddle dims]);
604          $rng->ran_lognormal($mu,$sigma,$output_piddle);
605
606   ran_lognormal_var
607       Similar to ran_lognormal except that it takes the distribution
608       parameters as a piddle and returns a piddle of equal dimensions.
609
610       Usage:
611
612          $piddle = $rng->ran_lognormal_var($mu_piddle, $sigma_piddle);
613
614   ran_negative_binomial
615       Fills output piddle with random integer values from the negative
616       binomial distribution, the number of failures occurring before $n
617       successes in independent trials with probability $p of success. Note
618       that $n is not required to be an integer.
619
620       Usage:
621
622          $piddle = $rng->ran_negative_binomial($p,$n,[list of integers = output piddle dims]);
623          $rng->ran_negative_binomial($p,$n,$output_piddle);
624
625   ran_negative_binomial_var
626       Similar to ran_negative_binomial except that it takes the distribution
627       parameters as a piddle and returns a piddle of equal dimensions.
628
629       Usage:
630
631          $piddle = $rng->ran_negative_binomial_var($p_piddle, $n_piddle);
632
633   ran_pareto
634       Fills output piddle with random variates from the Pareto distribution
635       of order $pa and scale $lb.
636
637       Usage:
638
639          $piddle = $rng->ran_pareto($pa,$lb,[list of integers = output piddle dims]);
640          $rng->ran_pareto($pa,$lb,$output_piddle);
641
642   ran_pareto_var
643       Similar to ran_pareto except that it takes the distribution parameters
644       as a piddle and returns a piddle of equal dimensions.
645
646       Usage:
647
648          $piddle = $rng->ran_pareto_var($a_piddle, $b_piddle);
649
650   ran_pascal
651       Fills output piddle with random integer values from the Pascal
652       distribution.  The Pascal distribution is simply a negative binomial
653       distribution (see ran_negative_binomial) with an integer value of $n.
654
655       Usage:
656
657          $piddle = $rng->ran_pascal($p,$n,[list of integers = output piddle dims]);
658          $rng->ran_pascal($p,$n,$output_piddle);
659
660   ran_pascal_var
661       Similar to ran_pascal except that it takes the distribution parameters
662       as a piddle and returns a piddle of equal dimensions.
663
664       Usage:
665
666          $piddle = $rng->ran_pascal_var($p_piddle, $n_piddle);
667
668   ran_rayleigh
669       Fills output piddle with random variates from the Rayleigh distribution
670       with scale parameter $sigma.
671
672       Usage:
673
674          $piddle = $rng->ran_rayleigh($sigma,[list of integers = output piddle dims]);
675          $rng->ran_rayleigh($sigma,$output_piddle);
676
677   ran_rayleigh_var
678       Similar to ran_rayleigh except that it takes the distribution
679       parameters as a piddle and returns a piddle of equal dimensions.
680
681       Usage:
682
683          $piddle = $rng->ran_rayleigh_var($sigma_piddle);
684
685   ran_rayleigh_tail
686       Fills output piddle with random variates from the tail of the Rayleigh
687       distribution with scale parameter $sigma and a lower limit of $la.
688
689       Usage:
690
691          $piddle = $rng->ran_rayleigh_tail($la,$sigma,[list of integers = output piddle dims]);
692          $rng->ran_rayleigh_tail($x,$sigma,$output_piddle);
693
694   ran_rayleigh_tail_var
695       Similar to ran_rayleigh_tail except that it takes the distribution
696       parameters as a piddle and returns a piddle of equal dimensions.
697
698       Usage:
699
700          $piddle = $rng->ran_rayleigh_tail_var($a_piddle, $sigma_piddle);
701
702   ran_tdist
703       Fills output piddle with random variates from the t-distribution (AKA
704       Student's t-distribution) with $nu degrees of freedom.
705
706       Usage:
707
708          $piddle = $rng->ran_tdist($nu,[list of integers = output piddle dims]);
709          $rng->ran_tdist($nu,$output_piddle);
710
711   ran_tdist_var
712       Similar to ran_tdist except that it takes the distribution parameters
713       as a piddle and returns a piddle of equal dimensions.
714
715       Usage:
716
717          $piddle = $rng->ran_tdist_var($nu_piddle);
718
719   ran_ugaussian_tail
720       Fills output piddle with random variates from the upper tail of a
721       Gaussian distribution with "standard deviation = 1" (AKA unit Gaussian
722       distribution).
723
724       Usage:
725
726          $piddle = $rng->ran_ugaussian_tail($tail,[list of integers = output piddle dims]);
727          $rng->ran_ugaussian_tail($tail,$output_piddle);
728
729   ran_ugaussian_tail_var
730       Similar to ran_ugaussian_tail except that it takes the distribution
731       parameters as a piddle and returns a piddle of equal dimensions.
732
733       Usage:
734
735          $piddle = $rng->ran_ugaussian_tail_var($tail_piddle);
736
737   ran_weibull
738       Fills output piddle with random variates from the Weibull distribution
739       with scale $pa and exponent $pb. (Some literature uses "lambda" for $pa
740       and "k" for $pb.)
741
742       Usage:
743
744          $piddle = $rng->ran_weibull($pa,$pb,[list of integers = output piddle dims]);
745          $rng->ran_weibull($pa,$pb,$output_piddle);
746
747   ran_weibull_var
748       Similar to ran_weibull except that it takes the distribution parameters
749       as a piddle and returns a piddle of equal dimensions.
750
751       Usage:
752
753          $piddle = $rng->ran_weibull_var($a_piddle, $b_piddle);
754
755   ran_dir
756       Returns $n random vectors in $ndim dimensions.
757
758       Usage:
759
760          $piddle = $rng->ran_dir($ndim,$n);
761
762       Example:
763
764          $o = $rng->ran_dir($ndim,$n);
765
766   ran_discrete_preproc
767       This method returns a handle that must be used when calling
768       ran_discrete. You specify the probability of the integer number that
769       are returned by ran_discrete.
770
771       Usage:
772
773          $discrete_dist_handle = $rng->ran_discrete_preproc($double_piddle_prob);
774
775       Example:
776
777          $prob = pdl [0.1,0.3,0.6];
778          $ddh = $rng->ran_discrete_preproc($prob);
779          $o = $rng->ran_discrete($discrete_dist_handle,100);
780
781   ran_discrete
782       Is used to get the desired samples once a proper handle has been
783       enstablished (see ran_discrete_preproc()).
784
785       Usage:
786
787          $piddle = $rng->ran_discrete($discrete_dist_handle,$num);
788
789       Example:
790
791          $prob = pdl [0.1,0.3,0.6];
792          $ddh = $rng->ran_discrete_preproc($prob);
793          $o = $rng->ran_discrete($discrete_dist_handle,100);
794
795   ran_ver
796       Returns a piddle with $n values generated by the Verhulst map from $x0
797       and parameter $r.
798
799       Usage:
800
801          $rng->ran_ver($x0, $r, $n);
802
803   ran_caos
804       Returns values from Verhuls map with "$r=4.0" and randomly chosen $x0.
805       The values are scaled by $m.
806
807       Usage:
808
809          $rng->ran_caos($m,$n);
810

BUGS

812       Feedback is welcome. Log bugs in the PDL bug database (the database is
813       always linked from <http://pdl.perl.org/>).
814

SEE ALSO

816       PDL
817
818       The GSL documentation for random number distributions is online at
819       <https://www.gnu.org/software/gsl/doc/html/randist.html>
820

AUTHOR

822       This file copyright (C) 1999 Christian Pellegrin
823       <chri@infis.univ.trieste.it> Docs mangled by C. Soeller. All rights
824       reserved. There is no warranty. You are allowed to redistribute this
825       software / documentation under certain conditions. For details, see the
826       file COPYING in the PDL distribution. If this file is separated from
827       the PDL distribution, the copyright notice should be included in the
828       file.
829
830       The GSL RNG and randist modules were written by James Theiler.
831
832
833
834perl v5.30.2                      2020-04-02                            RNG(3)
Impressum