1lis(3)                 Introduction to Library Functions                lis(3)
2
3
4

NAME

6       lis - library of iterative solvers for linear systems
7
8

SYNOPSIS

10       [see Lis User Guide for full description]
11
12

DESCRIPTION

14       Lis (Library of Iterative Solvers for linear systems, pronounced [lis])
15       is a parallel software library for solving discretized linear equations
16       and eigenvalue problems that arise in the numerical solution of partial
17       differential equations using iterative methods.
18
19
20       Lis provides facilities for:
21
22       * Automatic program configuration
23
24       * NUMA aware hybrid implementation with MPI and OpenMP
25
26       * Exchangeable dense and sparse matrix storage formats
27
28       * Basic linear algebra operations for dense and sparse matrices
29
30       * Parallel iterative methods for linear equations and eigenvalue  prob‐
31       lems
32
33       * Parallel preconditioners for iterative methods
34
35       * Quadruple precision floating point operations
36
37       * Performance analysis
38
39       * Command-line interface to solvers and benchmarks
40
41

SYSTEM REQUIREMENTS

43       The  installation  of  Lis requires a C compiler. The Fortran interface
44       requires a Fortran compiler, and the algebraic multigrid preconditioner
45       requires a Fortran 90 compiler. For parallel computing environments, an
46       OpenMP or an MPI-1 library is used. Both the Harwell-Boeing and  Matrix
47       Market formats are supported to import and export user data.
48
49

REFERENCES

51       *  Akira Nishida (2010). "Experience in Developing an Open Source Scal‐
52       able Software Infrastructure in Japan". Computational Science  and  Its
53       Applications  -  ICCSA  2010.  Lecture  Notes in Computer Science 6017.
54       Springer.    pp.    87-98.    doi:10.1007/978-3-642-12165-4_36.    ISBN
55       3-642-12164-0.
56
57       * Hisashi Kotakemori, Hidehiko Hasegawa, Tamito Kajiyama, Akira Nukada,
58       Reiji Suda, and Akira Nishida (2008). "Performance Evaluation of Paral‐
59       lel  Sparse  Matrix-Vector  Products  on SGI Altix 3700". OpenMP Shared
60       Memory Parallel Programming. Lecture Notes in  Computer  Science  4315.
61       Springer.    pp.    153-163.   doi:10.1007/978-3-540-68555-5_13.   ISBN
62       3-540-68554-5.
63
64       * Hisashi Kotakemori, Hidehiko  Hasegawa,  and  Akira  Nishida  (2005).
65       "Performance  Evaluation  of  a Parallel Iterative Method Library using
66       OpenMP". Proceedings of the 8th International Conference on  High  Per‐
67       formance  Computing  in  Asia  Pacific Region (HPC Asia 2005). Beijing:
68       IEEE. pp. 432-436. doi:10.1109/HPCASIA.2005.74. ISBN 0-7695-2486-9.
69
70       * Akihiro Fujii, Akira Nishida, and Yoshio Oyanagi (2005).  "Evaluation
71       of  Parallel Aggregate Creation Orders : Smoothed Aggregation Algebraic
72       Multigrid Method". High Performance Computational Science and Engineer‐
73       ing.    Springer.   pp.   99-122.   doi:10.1007/0-387-24049-7_6.   ISBN
74       1-4419-3684-X.
75
76

SEE ALSO

78       lsolve(1), esolve(1), hpcg_kernel(1),  hpcg_spmvtest(1),  spmvtest1(1),
79       spmvtest2(1), spmvtest2b(1), spmvtest3(1), spmvtest3b(1), spmvtest4(1),
80       spmvtest5(1)
81
82       http://www.ssisc.org/lis/
83       http://math.nist.gov/MatrixMarket/
84
85
86
87
88Man Page                          25 Oct 2016                           lis(3)
Impressum