1PSBASEMAP(1) Generic Mapping Tools PSBASEMAP(1)
2
3
4
6 psbasemap - To plot PostScript basemaps
7
9 psbasemap -B[p|s]parameters -Jparameters
10 -Rwest/east/south/north[/zmin/zmax][r] [
11 -Eazim/elev[+wlon/lat[/z]][+vx0/y0] ] [ -Gfill ] [ -Jz|Zparameters ] [
12 -K ] [ -L[f][x]lon0/lat0[/slon]/slat/length[m|n|k][+lla‐
13 bel][+jjust][+ppen][+ffill][+u] ] ] [ -O ] [ -P ] [
14 -U[just/dx/dy/][c|label] ] [
15 -T[f|m][x]lon0/lat0/size[/info][:w,e,s,n:][+gint[/mint]] ] [ -V ] [
16 -X[a|c|r][x-shift[u]] ] [ -Y[a|c|r][y-shift[u]] ] [ -Zzlevel ] [
17 -ccopies ]
18
20 psbasemap creates PostScript code that will produce a basemap. Several
21 map projections are available, and the user may specify separate tick‐
22 mark intervals for boundary annotation, ticking, and [optionally] grid‐
23 lines. A simple map scale or directional rose may also be plotted.
24
25 -B Sets map boundary annotation and tickmark intervals. The format
26 of tickinfo is
27 [p|s]xinfo[/yinfo[/zinfo]][:."Title":][W|w][E|e][S|s][N|n][Z|z[+]].
28 The leading p [Default] or s selects the primary or secondary
29 annotation information. Each of the ?info segments are
30 textstrings of the form info[:"Axis label":][:="pre‐
31 fix":][:,"unit label":]. The info string is made up of one or
32 more concatenated substrings of the form
33 [which]stride[+-phase][u]. The optional which can be either a
34 for annotation tick spacing [Default], f for frame tick spacing,
35 and g for gridline spacing. If frame interval is not set, it is
36 assumed to be the same as annotation interval. stride is the
37 desired stride interval. The optional phase shifts the annota‐
38 tion interval by that amount. The optional u indicates the unit
39 of the stride and can be any of Y (year, plot with 4 digits), y
40 (year, plot with 2 digits), O (month, plot using PLOT_DATE_FOR‐
41 MAT), o (month, plot with 2 digits), U (ISO week, plot using
42 PLOT_DATE_FORMAT), u (ISO week, plot using 2 digits), r (Grego‐
43 rian week, 7-day stride from start of week TIME_WEEK_START), K
44 (ISO weekday, plot name of day), D (date, plot using
45 PLOT_DATE_FORMAT), d (day, plot day of month 0-31 or year 1-366,
46 via PLOT_DATE_FORMAT), R (day, same as d, aligned with
47 TIME_WEEK_START), H (hour, plot using PLOT_CLOCK_FORMAT), h
48 (hour, plot with 2 digits), M (minute, plot using
49 PLOT_CLOCK_FORMAT), m (minute, plot with 2 digits), C (second,
50 plot using PLOT_CLOCK_FORMAT), c (second, plot with 2 digits).
51 Note for geographic axes m and c instead mean arc minutes and
52 arc seconds. All entities that are language-specific are under
53 control by TIME_LANGUAGE. To specify separate x and y ticks,
54 separate the substrings that apply to the x and y axes with a
55 slash [/] (If a 3-D basemap is selected with -E and -Jz, a third
56 substring pertaining to the vertical axis may be appended.) For
57 linear/log/power projections (-Jx|X): Labels for each axis can
58 be added by surrounding them with colons (:). If the first
59 character in the label is a period, then the label is used as
60 plot title; if it is a comma (,) then the label is appended to
61 each annotation; if it is an equal sign (=) the the prefix is
62 prepended to each annotation (start label/prefix with - to avoid
63 space between annotation and item); else it is the axis label.
64 If the label consists of more than one word, enclose the entire
65 label in double quotes (e.g., :"my label":). If you need to use
66 a colon (:) as part of your label you must specify it using its
67 octal code (\072).
68 By default, all 4 boundaries are plotted (referred to as W, E,
69 S, N). To change the default, append the code for only those
70 axes you want (e.g., WS for standard lower-left x- and y-axis
71 system). Upper case (e.g., W) means draw axis/tickmarks AND
72 annotate it, whereas lower case (e.g., w) will only draw
73 axis/tickmarks. (If a 3-D basemap is selected with -E and -Jz,
74 append Z or z to control the appearance of the vertical axis.
75 Append + to draw the outline of the cube defined by -R. Note
76 that for 3-D views the title, if given, will be suppressed.)
77 For non-geographical projections: Give negative scale (in -Jx)
78 or axis length (in -JX) to change the direction of increasing
79 coordinates (i.e., to make the y-axis positive down). For log10
80 axes: Annotations can be specified in one of three ways: (1)
81 stride can be 1, 2, 3, or -n. Annotations will then occur at 1,
82 1-2-5, or 1-2-3-4-...-9, respectively; for -n we annotate every
83 n't magnitude. This option can also be used for the frame and
84 grid intervals. (2) An l is appended to the tickinfo string.
85 Then, log10 of the tick value is plotted at every integer log10
86 value. (3) A p is appended to the tickinfo string. Then, anno‐
87 tations appear as 10 raised to log10 of the tick value. For
88 power axes: Annotations can be specified in one of two ways:
89 (1) stride sets the regular annotation interval. (2) A p is
90 appended to the tickinfo string. Then, the annotation interval
91 is expected to be in transformed units, but the annotation value
92 will be plotted as untransformed units. E.g., if stride = 1 and
93 power = 0.5 (i.e., sqrt), then equidistant annotations labeled
94 1-4-9... will appear.
95 These GMT parameters can affect the appearance of the map bound‐
96 ary: ANNOT_MIN_ANGLE, ANNOT_MIN_SPACING, ANNOT_FONT_PRIMARY,
97 ANNOT_FONT_SECONDARY, ANNOT_FONT_SIZE_PRIMARY,
98 ANNOT_FONT_SIZE_SECONDARY, ANNOT_OFFSET_PRIMARY, ANNOT_OFF‐
99 SET_SECONDARY, BASEMAP_AXES, BASEMAP_FRAME_RGB, BASEMAP_TYPE,
100 PLOT_DEGREE_FORMAT, FRAME_PEN, FRAME_WIDTH, GRID_CROSS_SIZE_PRI‐
101 MARY, GRID_PEN_PRIMARY, GRID_CROSS_SIZE_SECONDARY, GRID_PEN_SEC‐
102 ONDARY, HEADER_FONT, HEADER_FONT_SIZE, LABEL_FONT,
103 LABEL_FONT_SIZE, LINE_STEP, OBLIQUE_ANNOTATION, PLOT_CLOCK_FOR‐
104 MAT, PLOT_DATE_FORMAT, TIME_FORMAT_PRIMARY, TIME_FORMAT_SEC‐
105 ONDARY, TIME_LANGUAGE, TIME_WEEK_START, TICK_LENGTH, TICK_PEN,
106 and Y_AXIS_TYPE; see the gmtdefaults man page for details.
107
108 -J Selects the map projection. The following character determines
109 the projection. If the character is upper case then the argu‐
110 ment(s) supplied as scale(s) is interpreted to be the map width
111 (or axis lengths), else the scale argument(s) is the map scale
112 (see its definition for each projection). UNIT is cm, inch, or
113 m, depending on the MEASURE_UNIT setting in .gmtdefaults4, but
114 this can be overridden on the command line by appending c, i, or
115 m to the scale or width values. Append h, +, or - to the given
116 width if you instead want to set map height, the maximum dimen‐
117 sion, or the minimum dimension, respectively [Default is w for
118 width].
119 In case the central meridian is an optional parameter and it is
120 being omitted, then the center of the longitude range given by
121 the -R option is used. The default standard parallel is the
122 equator.
123 The ellipsoid used in the map projections is user-definable by
124 editing the .gmtdefaults4 file in your home directory. 73 com‐
125 monly used ellipsoids and spheroids are currently supported, and
126 users may also specify their own custum ellipsoid parameters
127 [Default is WGS-84]. Several GMT parameters can affect the pro‐
128 jection: ELLIPSOID, INTERPOLANT, MAP_SCALE_FACTOR, and MEA‐
129 SURE_UNIT; see the gmtdefaults man page for details.
130 Choose one of the following projections (The E or C after pro‐
131 jection names stands for Equal-Area and Conformal, respec‐
132 tively):
133
134 CYLINDRICAL PROJECTIONS:
135
136 -Jclon0/lat0/scale or -JClon0/lat0/width (Cassini).
137 Give projection center lon0/lat0 and scale (1:xxxx or
138 UNIT/degree).
139
140 -Jcyl_stere/[lon0/[lat0/]]scale or
141 -JCyl_stere/[lon0/[lat0/]]width (Cylindrical Stereographic).
142 Give central meridian lon0 (optional), standard parallel
143 lat0 (optional), and scale along parallel (1:xxxx or
144 UNIT/degree). The standard parallel is typically one of
145 these (but can be any value):
146 66.159467 - Miller's modified Gall
147 55 - Kamenetskiy's First
148 45 - Gall's Stereographic
149 30 - Bolshoi Sovietskii Atlas Mira or Kamenet‐
150 skiy's Second
151 0 - Braun's Cylindrical
152
153 -Jj[lon0/]scale or -JJ[lon0/]width (Miller Cylindrical Projec‐
154 tion).
155 Give the central meridian lon0 (optional) and scale
156 (1:xxxx or UNIT/degree).
157
158 -Jm[lon0/[lat0/]]scale or -JM[lon0/[lat0/]]width
159 Give central meridian lon0 (optional), standard parallel
160 lat0 (optional), and scale along parallel (1:xxxx or
161 UNIT/degree).
162
163 -Joparameters (Oblique Mercator [C]).
164 Specify one of:
165
166 -Jo[a]lon0/lat0/azimuth/scale or
167 -JO[a]lon0/lat0/azimuth/width
168 Set projection center lon0/lat0, azimuth of
169 oblique equator, and scale.
170
171 -Jo[b]lon0/lat0/lon1/lat1/scale or
172 -JO[b]lon0/lat0/lon1/lat1/scale
173 Set projection center lon0/lat0, another point on
174 the oblique equator lon1/lat1, and scale.
175
176 -Joclon0/lat0/lonp/latp/scale or
177 -JOclon0/lat0/lonp/latp/scale
178 Set projection center lon0/lat0, pole of oblique
179 projection lonp/latp, and scale.
180
181 Give scale along oblique equator (1:xxxx or UNIT/degree).
182
183 -Jq[lon0/[lat0/]]scale or -JQ[lon0/[lat0/]]width (Cylindrical
184 Equidistant).
185 Give the central meridian lon0 (optional), standard par‐
186 allel lat0 (optional), and scale (1:xxxx or UNIT/degree).
187 The standard parallel is typically one of these (but can
188 be any value):
189 61.7 - Grafarend and Niermann, minimum linear dis‐
190 tortion
191 50.5 - Ronald Miller Equirectangular
192 43.5 - Ronald Miller, minimum continental distor‐
193 tion
194 42 - Grafarend and Niermann
195 37.5 - Ronald Miller, minimum overall distortion
196 0 - Plate Carree, Simple Cylindrical, Plain/Plane
197 Chart
198
199 -Jtlon0/[lat0/]scale or -JTlon0/[lat0/]width
200 Give the central meridian lon0, central parallel lat0
201 (optional), and scale (1:xxxx or UNIT/degree).
202
203 -Juzone/scale or -JUzone/width (UTM - Universal Transverse Mer‐
204 cator [C]).
205 Give the UTM zone (A,B,1-60[C-X],Y,Z)) and scale (1:xxxx
206 or UNIT/degree).
207 Zones: If C-X not given, prepend - or + to enforce south‐
208 ern or northern hemisphere conventions [northern if south
209 > 0].
210
211 -Jy[lon0/[lat0/]]scale or -JY[lon0/[lat0/]]width (Cylindrical
212 Equal-Area [E]).
213 Give the central meridian lon0 (optional), standard par‐
214 allel lat0 (optional), and scale (1:xxxx or UNIT/degree).
215 The standard parallel is typically one of these (but can
216 be any value):
217 50 - Balthasart
218 45 - Gall-Peters
219 37.0666 - Caster
220 37.4 - Trystan Edwards
221 37.5 - Hobo-Dyer
222 30 - Behrman
223 0 - Lambert (default)
224
225 CONIC PROJECTIONS:
226
227 -Jblon0/lat0/lat1/lat2/scale or -JBlon0/lat0/lat1/lat2/width
228 (Albers [E]).
229 Give projection center lon0/lat0, two standard parallels
230 lat1/lat2, and scale (1:xxxx or UNIT/degree).
231
232 -Jdlon0/lat0/lat1/lat2/scale or -JDlon0/lat0/lat1/lat2/width
233 (Conic Equidistant)
234 Give projection center lon0/lat0, two standard parallels
235 lat1/lat2, and scale (1:xxxx or UNIT/degree).
236
237 -Jllon0/lat0/lat1/lat2/scale or -JLlon0/lat0/lat1/lat2/width
238 (Lambert [C])
239 Give origin lon0/lat0, two standard parallels lat1/lat2,
240 and scale along these (1:xxxx or UNIT/degree).
241
242 -Jpoly/[lon0/[lat0/]]scale or -JPoly/[lon0/[lat0/]]width ((Amer‐
243 ican) Polyconic).
244 Give the central meridian lon0 (optional), reference par‐
245 allel lat0 (optional, default = equator), and scale along
246 central meridian (1:xxxx or UNIT/degree).
247
248 AZIMUTHAL PROJECTIONS:
249
250 Except for polar aspects, -Rw/e/s/n will be reset to -Rg. Use
251 -R<...>r for smaller regions.
252
253 -Jalon0/lat0[/horizon]/scale or -JAlon0/lat0[/horizon]/width
254 (Lambert [E]).
255 lon0/lat0 specifies the projection center. horizon spec‐
256 ifies the max distance from projection center (in
257 degrees, <= 180, default 90). Give scale as 1:xxxx or
258 radius/lat, where radius is distance in UNIT from origin
259 to the oblique latitude lat.
260
261 -Jelon0/lat0[/horizon]/scale or -JElon0/lat0[/horizon]/width
262 (Azimuthal Equidistant).
263 lon0/lat0 specifies the projection center. horizon spec‐
264 ifies the max distance from projection center (in
265 degrees, <= 180, default 180). Give scale as 1:xxxx or
266 radius/lat, where radius is distance in UNIT from origin
267 to the oblique latitude lat.
268
269 -Jflon0/lat0[/horizon]/scale or -JFlon0/lat0[/horizon]/width
270 (Gnomonic).
271 lon0/lat0 specifies the projection center. horizon spec‐
272 ifies the max distance from projection center (in
273 degrees, < 90, default 60). Give scale as 1:xxxx or
274 radius/lat, where radius is distance in UNIT from origin
275 to the oblique latitude lat.
276
277 -Jglon0/lat0[/horizon]/scale or -JGlon0/lat0[/horizon]/width
278 (Orthographic).
279 lon0/lat0 specifies the projection center. horizon spec‐
280 ifies the max distance from projection center (in
281 degrees, <= 90, default 90). Give scale as 1:xxxx or
282 radius/lat, where radius is distance in UNIT from origin
283 to the oblique latitude lat.
284
285 -Jglon0/lat0/altitude/azimuth/tilt/twist/Width/Height/scale or
286 -JGlon0/lat0/altitude/azimuth/tilt/twist/Width/Height/width
287 (General Perspective).
288 lon0/lat0 specifies the projection center. altitude is
289 the height (in km) of the viewpoint above local sea
290 level. If altitude is less than 10, then it is the dis‐
291 tance from the center of the earth to the viewpoint in
292 earth radii. If altitude has a suffix r then it is the
293 radius from the center of the earth in kilometers.
294 azimuth is measured to the east of north of view. tilt
295 is the upward tilt of the plane of projection. If tilt is
296 negative, then the viewpoint is centered on the horizon.
297 Further, specify the clockwise twist, Width, and Height
298 of the viewpoint in degrees. Give scale as 1:xxxx or
299 radius/lat, where radius is distance in UNIT from origin
300 to the oblique latitude lat.
301
302 -Jslon0/lat0[/horizon]/scale or -JSlon0/lat0[/horizon]/width
303 (General Stereographic [C]).
304 lon0/lat0 specifies the projection center. horizon spec‐
305 ifies the max distance from projection center (in
306 degrees, < 180, default 90). Give scale as 1:xxxx (true
307 at pole) or lat0/1:xxxx (true at standard parallel lat0)
308 or radius/lat (radius in UNIT from origin to the oblique
309 latitude lat). Note if 1:xxxx is used then to specify
310 horizon you must also specify the lat0 as +-90 to avoid
311 ambiguity.
312
313 MISCELLANEOUS PROJECTIONS:
314
315 -Jh[lon0/]scale or -JH[lon0/]width (Hammer [E]).
316 Give the central meridian lon0 (optional) and scale along
317 equator (1:xxxx or UNIT/degree).
318
319 -Ji[lon0/]scale or -JI[lon0/]width (Sinusoidal [E]).
320 Give the central meridian lon0 (optional) and scale along
321 equator (1:xxxx or UNIT/degree).
322
323 -Jkf[lon0/]scale or -JKf[lon0/]width (Eckert IV) [E]).
324 Give the central meridian lon0 (optional) and scale along
325 equator (1:xxxx or UNIT/degree).
326
327 -Jk[s][lon0/]scale or -JK[s][lon0/]width (Eckert VI) [E]).
328 Give the central meridian lon0 (optional) and scale along
329 equator (1:xxxx or UNIT/degree).
330
331 -Jn[lon0/]scale or -JN[lon0/]width (Robinson).
332 Give the central meridian lon0 (optional) and scale along
333 equator (1:xxxx or UNIT/degree).
334
335 -Jr[lon0/]scale -JR[lon0/]width (Winkel Tripel).
336 Give the central meridian lon0 (optional) and scale along
337 equator (1:xxxx or UNIT/degree).
338
339 -Jv[lon0/]scale or -JV[lon0/]width (Van der Grinten).
340 Give the central meridian lon0 (optional) and scale along
341 equator (1:xxxx or UNIT/degree).
342
343 -Jw[lon0/]scale or -JW[lon0/]width (Mollweide [E]).
344 Give the central meridian lon0 (optional) and scale along
345 equator (1:xxxx or UNIT/degree).
346
347 NON-GEOGRAPHICAL PROJECTIONS:
348
349 -Jp[a]scale[/origin][r|z] or -JP[a]width[/origin][r|z] (Polar
350 coordinates (theta,r))
351 Optionally insert a after -Jp [ or -JP] for azimuths CW
352 from North instead of directions CCW from East [Default].
353 Optionally append /origin in degrees to indicate an angu‐
354 lar offset [0]). Finally, append r if r is elevations in
355 degrees (requires s >= 0 and n <= 90) or z if you want to
356 annotate depth rather than radius [Default]. Give scale
357 in UNIT/r-unit.
358
359 -Jxx-scale[/y-scale] or -JXwidth[/height] (Linear, log, and
360 power scaling)
361 Give x-scale (1:xxxx or UNIT/x-unit) and/or y-scale
362 (1:xxxx or UNIT/y-unit); or specify width and/or height
363 in UNIT. y-scale=x-scale if not specified separately and
364 using 1:xxxx implies that x-unit and y-unit are in
365 meters. Use negative scale(s) to reverse the direction
366 of an axis (e.g., to have y be positive down). Set height
367 or width to 0 to have it recomputed based on the implied
368 scale of the other axis. Optionally, append to x-scale,
369 y-scale, width or height one of the following:
370
371 d Data are geographical coordinates (in degrees).
372
373 l Take log10 of values before scaling.
374
375 ppower Raise values to power before scaling.
376
377 t Input coordinates are time relative to TIME_EPOCH.
378
379 T Input coordinates are absolute time.
380
381 Default axis lengths (see gmtdefaults) can be invoked
382 using -JXh (for landscape); -JXv (for portrait) will swap
383 the x- and y-axis lengths. The default unit for this
384 installation is either cm or inch, as defined in the file
385 share/gmt.conf. However, you may change this by editing
386 your .gmtdefaults4 file(s).
387
388 -R xmin, xmax, ymin, and ymax specify the Region of interest. For
389 geographic regions, these limits correspond to west, east,
390 south, and north and you may specify them in decimal degrees or
391 in [+-]dd:mm[:ss.xxx][W|E|S|N] format. Append r if lower left
392 and upper right map coordinates are given instead of w/e/s/n.
393 The two shorthands -Rg and -Rd stand for global domain (0/360
394 and -180/+180 in longitude respectively, with -90/+90 in lati‐
395 tude). Alternatively, specify the name of an existing grid file
396 and the -R settings (and grid spacing, if applicable) are copied
397 from the grid. For calendar time coordinates you may either
398 give (a) relative time (relative to the selected TIME_EPOCH and
399 in the selected TIME_UNIT; append t to -JX|x), or (b) absolute
400 time of the form [date]T[clock] (append T to -JX|x). At least
401 one of date and clock must be present; the T is always required.
402 The date string must be of the form [-]yyyy[-mm[-dd]] (Gregorian
403 calendar) or yyyy[-Www[-d]] (ISO week calendar), while the clock
404 string must be of the form hh:mm:ss[.xxx]. The use of delim‐
405 iters and their type and positions must be exactly as indicated
406 (however, input, output and plot formats are customizable; see
407 gmtdefaults).
408
410 No space between the option flag and the associated arguments.
411
412 -E Sets the viewpoint's azimuth and elevation (for perspective
413 view) [180/90]. For frames used for animation, you may want to
414 append + to fix the center of your data domain (or specify a
415 particular world coordinate point with +wlon0/lat[/z]) which
416 will project to the center of your page size (or specify the
417 coordinates of the projected veiw point with +vx0/y0).
418
419 -G Select fill shade, color or pattern for the inside of the
420 basemap [Default is no fill color]. (See SPECIFYING FILL
421 below).
422
423 -Jz Sets the vertical scaling (for 3-D maps). Same syntax as -Jx.
424
425 -K More PostScript code will be appended later [Default terminates
426 the plot system].
427
428 -L Draws a simple map scale centered on lon0/lat0. Use -Lx to
429 specify x/y position instead. Scale is calculated at latitude
430 slat (optionally supply longitude slon for oblique projections
431 [Default is central meridian]), length is in km [miles if m is
432 appended; nautical miles if n is appended]. Use -Lf to get a
433 "fancy" scale [Default is plain]. Append +l to select the
434 default label which equals the distance unit (km, miles, nauti‐
435 cal miles) and is justified on top of the scale [t]. Change
436 this by giving your own label (append +llabel). Change label
437 justification with +jjustification (choose among l(eft),
438 r(ight), t(op), and b(ottom)). Apply +u to append the unit to
439 all distance annotations along the scale. If you want to place
440 a rectangle behind the scale, specify suitable +ppen and/or
441 +ffill parameters. (See SPECIFYING PENS and SPECIFYING FILL
442 below).
443
444 -O Selects Overlay plot mode [Default initializes a new plot sys‐
445 tem].
446
447 -P Selects Portrait plotting mode [Default is Landscape, see gmtde‐
448 faults to change this].
449
450 -T Draws a simple map directional rose centered on lon0/lat0. Use
451 -Tx to specify x/y position instead. The size is the diameter
452 of the rose, and optional label information can be specified to
453 override the default values of W, E, S, and N (Give :: to sup‐
454 press all labels). The default [plain] map rose only labels
455 north. Use -Tf to get a "fancy" rose, and specify in info what
456 you want drawn. The default [1] draws the two principal E-W, N-
457 S orientations, 2 adds the two intermediate NW-SE and NE-SW ori‐
458 entations, while 3 adds the eight minor orientations WNW-ESE,
459 NNW-SSE, NNE-SSW, and ENE-WSW. For a magnetic compass rose,
460 specify -Tm. If given, info must be the two parameters dec/dla‐
461 bel, where dec is the magnetic declination and dlabel is a label
462 for the magnetic compass needle (specify - to format a label
463 from dec). Then, both directions to geographic and magnetic
464 north are plotted [Default is geographic only]. If the north
465 label is * then a north star is plotted instead of the north
466 label. Annotation and two levels of tick intervals for geo‐
467 graphic and magnetic directions are 10/5/1 and 30/5/1 degrees,
468 respectively; override these settings by appending
469 +gints[/mints]. Color and pen attributes are taken from
470 COLOR_BACKGROUND and TICK_PEN, respectively, while label fonts
471 and sizes follow the usual annotation, label, and header font
472 settings.
473
474 -U Draw Unix System time stamp on plot. By adding just/dx/dy/, the
475 user may specify the justification of the stamp and where the
476 stamp should fall on the page relative to lower left corner of
477 the plot. For example, BL/0/0 will align the lower left corner
478 of the time stamp with the lower left corner of the plot.
479 Optionally, append a label, or c (which will plot the command
480 string.). The GMT parameters UNIX_TIME, UNIX_TIME_POS, and
481 UNIX_TIME_FORMAT can affect the appearance; see the gmtdefaults
482 man page for details. The time string will be in the locale set
483 by the environment variable TZ (generally local time).
484
485 -V Selects verbose mode, which will send progress reports to stderr
486 [Default runs "silently"].
487
488 -X -Y Shift plot origin relative to the current origin by (x-shift,y-
489 shift) and optionally append the length unit (c, i, m, p). You
490 can prepend a to shift the origin back to the original position
491 after plotting, or prepend r [Default] to reset the current
492 origin to the new location. If -O is used then the default (x-
493 shift,y-shift) is (0,0), otherwise it is (r1i, r1i) or (r2.5c,
494 r2.5c). Alternatively, give c to align the center coordinate (x
495 or y) of the plot with the center of the page based on current
496 page size.
497
498 -Z For 3-D projections: Sets the z-level of the basemap [Default
499 is at the bottom end of the z-axis].
500
501 -c Specifies the number of plot copies. [Default is 1].
502
503 SPECIFYING PENS
504 pen The attributes of lines and symbol outlines as defined by pen is
505 a comma delimetered list of width, color and texture, each of
506 which is optional. width can be indicated as a measure (points,
507 centimeters, inches) or as faint, thin[ner|nest], thick[er|est],
508 fat[ter|test], or obese. color specifies a gray shade or color
509 (see SPECIFYING COLOR below). texture is a combination of
510 dashes `-' and dots `.'.
511
512 SPECIFYING FILL
513 fill The attribute fill specifies the solid shade or solid color (see
514 SPECIFYING COLOR below) or the pattern used for filling poly‐
515 gons. Patterns are specified as pdpi/pattern, where pattern
516 gives the number of the built-in pattern (1-90) or the name of a
517 Sun 1-, 8-, or 24-bit raster file. The dpi sets the resolution
518 of the image. For 1-bit rasters: use Pdpi/pattern for inverse
519 video, or append :Fcolor[B[color]] to specify fore- and back‐
520 ground colors (use color = - for transparency). See GMT Cook‐
521 book & Technical Reference Appendix E for information on indi‐
522 vidual patterns.
523
524 SPECIFYING COLOR
525 color The color of lines, areas and patterns can be specified by a
526 valid color name; by a gray shade (in the range 0-255); by a
527 decimal color code (r/g/b, each in range 0-255; h-s-v, ranges
528 0-360, 0-1, 0-1; or c/m/y/k, each in range 0-1); or by a hexa‐
529 decimal color code (#rrggbb, as used in HTML). See the gmtcol‐
530 ors manpage for more information and a full list of color names.
531
533 The following section illustrates the use of the options by giving some
534 examples for the available map projections. Note how scales may be
535 given in several different ways depending on the projection. Also note
536 the use of upper case letters to specify map width instead of map
537 scale.
538
540 Linear x-y plot
541 To make a linear x/y frame with all axes, but with only left and bottom
542 axes annotated, using xscale = yscale = 1.0, ticking every 1 unit and
543 annotating every 2, and using xlabel = "Distance" and ylabel = "No of
544 samples", use
545
546 psbasemap -R0/9/0/5 -Jx1 -Bf1a2:Distance:/:"No of samples":WeSn > lin‐
547 ear.ps
548
549 Log-log plot
550 To make a log-log frame with only the left and bottom axes, where the
551 x-axis is 25 cm and annotated every 1-2-5 and the y-axis is 15 cm and
552 annotated every power of 10 but has tickmarks every 0.1, run
553
554 psbasemap -R1/10000/1e20/1e25 -JX25cl/15cl -B2:Wave‐
555 length:/a1pf3:Power:WS > loglog.ps
556
557 Power axes
558 To design an axis system to be used for a depth-sqrt(age) plot with
559 depth positive down, ticked and annotated every 500m, and ages anno‐
560 tated at 1 my, 4 my, 9 my etc, use
561
562 psbasemap -R0/100/0/5000 -Jx1p0.5/-0.001 -B1p:"Crustal age":/500:Depth:
563 > power.ps
564
565 Polar (theta,r) plot
566 For a base map for use with polar coordinates, where the radius from 0
567 to 1000 should correspond to 3 inch and with gridlines and ticks every
568 30 degrees and 100 units, use
569
570 psbasemap -R0/360/0/1000 -JP6i -B30p/100 > polar.ps
571
573 Cassini
574 A 10-cm-wide basemap using the Cassini projection may be obtained by
575
576 psbasemap -R20/50/20/35 -JC35/28/10c -P OPR(B)5g5:.Cassini: >
577 cassini.ps
578
579 Mercator [conformal]
580 A Mercator map with scale 0.025 inch/degree along equator, and showing
581 the length of 5000 km along the equator (centered on 1/1 inch), may be
582 plotted as
583
584 psbasemap -R90/180/-50/50 -Jm0.025i -B30g30:.Mercator: -Lx1i/1i/0/5000
585 > mercator.ps
586
587 Miller
588 A global Miller cylindrical map with scale 1:200,000,000 may be plotted
589 as
590
591 psbasemap -Rg -Jj180/1:200000000 -B30g30:.Miller: > miller.ps
592
593 Oblique Mercator [conformal]
594 To create a page-size global oblique Mercator basemap for a pole at
595 (90,30) with gridlines every 30 degrees, run
596
597 psbasemap -R0/360/-70/70 -Joc0/0/90/30/0.064cd -B30g30:."Oblique Mer‐
598 cator": > oblmerc.ps
599
600 Transverse Mercator [conformal]
601 A regular Transverse Mercator basemap for some region may look like
602
603 psbasemap -R69:30/71:45/-17/-15:15 -Jt70/1:1000000 -B15m:."Survey
604 area": -P > transmerc.ps
605
606 Equidistant Cylindrical Projection
607 This projection only needs the central meridian and scale. A 25 cm
608 wide global basemap centered on the 130E meridian is made by
609
610 psbasemap -R-50/310/-90/90 -JQ130/25c -B30g30:."Equidistant Cylindri‐
611 cal": > cyl_eqdist.ps
612
613 Universal Transverse Mercator [conformal]
614 To use this projection you must know the UTM zone number, which defines
615 the central meridian. A UTM basemap for Indo-China can be plotted as
616
617 psbasemap -R95/5/108/20r -Ju46/1:10000000 -B3g3:.UTM: > utm.ps
618
619 Cylindrical Equal-Area
620 First select which of the cylindrical equal-area projections you want
621 by deciding on the standard parallel. Here we will use 45 degrees
622 which gives the Gall-Peters projection. A 9 inch wide global basemap
623 centered on the Pacific is made by
624
625 psbasemap -Rg -JY180/45/9i -B30g30:.Gall-Peters: > gall-peters.ps
626
628 Albers [equal-area]
629 A basemap for middle Europe may be created by
630
631 psbasemap -R0/90/25/55 -Jb45/20/32/45/0.25c -B10g10:."Albers Equal-
632 area": > albers.ps
633
634 Lambert [conformal]
635 Another basemap for middle Europe may be created by
636
637 psbasemap -R0/90/25/55 -Jl45/20/32/45/0.1i -B10g10:."Lambert Conformal
638 Conic": > lambertc.ps
639
640 Equidistant
641 Yet another basemap of width 6 inch for middle Europe may be created by
642
643 psbasemap -R0/90/25/55 -JD45/20/32/45/6i -B10g10:."Equidistant conic":
644 > econic.ps
645
646 Polyconic
647 A basemap for north America may be created by
648
649 psbasemap -R-180/-20/0/90 -JPoly/4i -B30g10/10g10:."Polyconic": > poly‐
650 conic.ps
651
653 Lambert [equal-area]
654 A 15-cm-wide global view of the world from the vantage point -80/-30
655 will give the following basemap:
656
657 psbasemap -Rg -JA-80/-30/15c -B30g30/15g15:."Lambert Azimuthal": > lam‐
658 berta.ps
659
660 Follow the instructions for stereographic projection if you want to
661 impose rectangular boundaries on the azimuthal equal-area map but sub‐
662 stitute -Ja for -Js.
663
664 Equidistant
665 A 15-cm-wide global map in which distances from the center (here
666 125/10) to any point is true can be obtained by:
667
668 psbasemap -Rg -JE125/10/15c -B30g30/15g15:.Equidistant: > equi.ps
669
670 Gnomonic
671 A view of the world from the vantage point -100/40 out to a horizon of
672 60 degrees from the center can be made using the Gnomonic projection:
673
674 psbasemap -Rg -JF-100/40/60/6i -B30g30/15g15:.Gnomonic: > gnomonic.ps
675
676 Orthographic
677 A global perspective (from infinite distance) view of the world from
678 the vantage point 125/10 will give the following 6-inch-wide basemap:
679
680 psbasemap -Rg -JG125/10/6i -B30g30/15g15:.Orthographic: > ortho.ps
681
682 General Perspective
683 The -JG option can be used in a more generalized form, specifying alti‐
684 tude above the surface, width and height of the view point, and twist
685 and tilt. A view from 160 km above -74/41.5 with a tilt of 55 and
686 azimuth of 210 degrees, and limiting the viewpoint to 30 degrees width
687 and height will product a 6-inch-wide basemap:
688
689 psbasemap -Rg -JG-74/41.5/160/210/55/30/30/6i -B5g1/5g1:."General Per‐
690 spective": > genper.ps
691
692 Stereographic [conformal]
693 To make a polar stereographic projection basemap with radius = 12 cm to
694 -60 degree latitude, with plot title "Salinity measurements", using 5
695 degrees annotation/tick interval and 1 degree gridlines, run
696
697 psbasemap -R-45/45/-90/-60 -Js0/-90/12c/-60 -B5g5:."Salinity measure‐
698 ments": > stereo1.ps
699
700 To make a 12-cm-wide stereographic basemap for Australia from an arbi‐
701 trary view point (not the poles), and use a rectangular boundary, we
702 must give the pole for the new projection and use the -R option to
703 indicate the lower left and upper right corners (in lon/lat) that will
704 define our rectangle. We choose a pole at 130/-30 and use 100/-45 and
705 160/-5 as our corners. The command becomes
706
707 psbasemap -R100/-45/160/-5r -JS130/-30/12c -B30g30/15g15:."General
708 Stereographic View": > stereo2.ps
709
711 Hammer [equal-area]
712 The Hammer projection is mostly used for global maps and thus the
713 spherical form is used. To get a world map centered on Greenwich at a
714 scale of 1:200000000, use
715
716 psbasemap -Rd -Jh0/1:200000000 -B30g30/15g15:.Hammer: > hammer.ps
717
718 Sinusoidal [equal-area]
719 To make a sinusoidal world map centered on Greenwich, with a scale
720 along the equator of 0.02 inch/degree, use
721
722 psbasemap -Rd -Ji0/0.02i -B30g30/15g15:.Sinusoidal: > sinus1.ps
723
724 To make an interrupted sinusoidal world map with breaks at 160W, 20W,
725 and 60E, with a scale along the equator of 0.02 inch/degree, run the
726 following sequence of commands:
727
728 psbasemap -R-160/-20/-90/90 -Ji-90/0.02i -B30g30/15g15Wesn -K >
729 sinus_i.ps
730 psbasemap -R-20/60/-90/90 -Ji20/0.02i -B30g30/15g15wesn -O -K -X2.8i >>
731 sinus_i.ps
732 psbasemap -R60/200/-90/90 -Ji130/0.02i -B30g30/15g15wEsn -O -X1.6i >>
733 sinus_i.ps
734
735 Eckert IV [equal-area]
736 Pseudo-cylindrical projection typically used for global maps only. Set
737 the central longitude and scale, e.g.,
738
739 psbasemap -Rg -Jkf180/0.064c -B30g30/15g15:."Eckert IV": > eckert4.ps
740
741 Eckert VI [equal-area]
742 Another pseudo-cylindrical projection typically used for global maps
743 only. Set the central longitude and scale, e.g.,
744
745 psbasemap -Rg -Jks180/0.064c -B30g30/15g15:."Eckert VI": > eckert6.ps
746
747 Robinson
748 Projection designed to make global maps "look right". Set the central
749 longitude and width, e.g.,
750
751 psbasemap -Rd -JN0/8i -B30g30/15g15:.Robinson: > robinson.ps
752
753 Winkel Tripel
754 Yet another projection typically used for global maps only. You can
755 set the central longitude, e.g.,
756
757 psbasemap -R90/450/-90/90 -JR270/25c -B30g30/15g15:."Winkel Tripel": >
758 winkel.ps
759
760 Mollweide [equal-area]
761 The Mollweide projection is also mostly used for global maps and thus
762 the spherical form is used. To get a 25-cm-wide world map centered on
763 the Dateline:
764
765 psbasemap -Rg -JW180/25c -B30g30/15g15:.Mollweide: > mollweide.ps
766
767 Van der Grinten
768 The Van der Grinten projection is also mostly used for global maps and
769 thus the spherical form is used. To get a 7-inch-wide world map cen‐
770 tered on the Dateline:
771
772 psbasemap -Rg -JV180/7i -B30g30/15g15:."Van der Grinten": > grinten.ps
773
775 For some projections, a spherical earth is implicitly assumed. A warn‐
776 ing will notify the user if -V is set. Also note that plot titles are
777 not plotted if -E is given.
778
780 The -B option is somewhat complicated to explain and comprehend. How‐
781 ever, it is fairly simple for most applications (see examples).
782
784 gmtcolors(5), gmtdefaults(1), GMT(1)
785
786
787
788GMT 4.5.6 10 Mar 2011 PSBASEMAP(1)