1PSBASEMAP(1)                 Generic Mapping Tools                PSBASEMAP(1)
2
3
4

NAME

6       psbasemap - To plot PostScript basemaps
7

SYNOPSIS

9       psbasemap                 -B[p|s]parameters                -Jparameters
10       -Rwest/east/south/north[/zmin/zmax][r]                                [
11       -Eazim/elev[+wlon/lat[/z]][+vx0/y0]  ] [ -Gfill ] [ -Jz|Zparameters ] [
12       -K      ]      [      -L[f][x]lon0/lat0[/slon]/slat/length[m|n|k][+lla‐
13       bel][+jjust][+ppen][+ffill][+u]    ]    ]   [   -O   ]   [   -P   ]   [
14       -U[just/dx/dy/][c|label]                      ]                       [
15       -T[f|m][x]lon0/lat0/size[/info][:w,e,s,n:][+gint[/mint]]  ]  [  -V  ] [
16       -X[a|c|r][x-shift[u]] ]  [  -Y[a|c|r][y-shift[u]]  ]  [  -Zzlevel  ]  [
17       -ccopies ]
18

DESCRIPTION

20       psbasemap creates PostScript code that will produce a basemap.  Several
21       map projections are available, and the user may specify separate  tick‐
22       mark intervals for boundary annotation, ticking, and [optionally] grid‐
23       lines.  A simple map scale or directional rose may also be plotted.
24
25       -B     Sets map boundary annotation and tickmark intervals. The  format
26              of                          tickinfo                          is
27              [p|s]xinfo[/yinfo[/zinfo]][:."Title":][W|w][E|e][S|s][N|n][Z|z[+]].
28              The  leading  p  [Default] or s selects the primary or secondary
29              annotation  information.   Each  of  the  ?info   segments   are
30              textstrings    of    the   form   info[:"Axis   label":][:="pre‐
31              fix":][:,"unit label":].  The info string is made up of  one  or
32              more      concatenated      substrings      of      the     form
33              [which]stride[+-phase][u].  The optional which can be  either  a
34              for annotation tick spacing [Default], f for frame tick spacing,
35              and g for gridline spacing.  If frame interval is not set, it is
36              assumed  to  be  the  same as annotation interval. stride is the
37              desired stride interval.  The optional phase shifts the  annota‐
38              tion interval by that amount.  The optional u indicates the unit
39              of the stride and can be any of Y (year, plot with 4 digits),  y
40              (year,  plot with 2 digits), O (month, plot using PLOT_DATE_FOR‐
41              MAT), o (month, plot with 2 digits), U  (ISO  week,  plot  using
42              PLOT_DATE_FORMAT),  u (ISO week, plot using 2 digits), r (Grego‐
43              rian week, 7-day stride from start of week  TIME_WEEK_START),  K
44              (ISO   weekday,   plot   name  of  day),  D  (date,  plot  using
45              PLOT_DATE_FORMAT), d (day, plot day of month 0-31 or year 1-366,
46              via   PLOT_DATE_FORMAT),   R  (day,  same  as  d,  aligned  with
47              TIME_WEEK_START), H  (hour,  plot  using  PLOT_CLOCK_FORMAT),  h
48              (hour,   plot   with   2   digits),   M   (minute,   plot  using
49              PLOT_CLOCK_FORMAT), m (minute, plot with 2 digits),  C  (second,
50              plot  using  PLOT_CLOCK_FORMAT), c (second, plot with 2 digits).
51              Note for geographic axes m and c instead mean  arc  minutes  and
52              arc  seconds.  All entities that are language-specific are under
53              control by TIME_LANGUAGE.  To specify separate x  and  y  ticks,
54              separate  the  substrings  that apply to the x and y axes with a
55              slash [/] (If a 3-D basemap is selected with -E and -Jz, a third
56              substring pertaining to the vertical axis may be appended.)  For
57              linear/log/power projections (-Jx|X): Labels for each  axis  can
58              be  added  by  surrounding  them  with colons (:).  If the first
59              character in the label is a period, then the label  is  used  as
60              plot  title;  if it is a comma (,) then the label is appended to
61              each annotation; if it is an equal sign (=) the  the  prefix  is
62              prepended to each annotation (start label/prefix with - to avoid
63              space between annotation and item); else it is the  axis  label.
64              If  the label consists of more than one word, enclose the entire
65              label in double quotes (e.g., :"my label":).  If you need to use
66              a  colon (:) as part of your label you must specify it using its
67              octal code (\072).
68              By default, all 4 boundaries are plotted (referred to as  W,  E,
69              S,  N).   To  change the default, append the code for only those
70              axes you want (e.g., WS for standard lower-left  x-  and  y-axis
71              system).   Upper  case  (e.g.,  W) means draw axis/tickmarks AND
72              annotate it,  whereas  lower  case  (e.g.,  w)  will  only  draw
73              axis/tickmarks.   (If a 3-D basemap is selected with -E and -Jz,
74              append Z or z to control the appearance of  the  vertical  axis.
75              Append  +  to  draw the outline of the cube defined by -R.  Note
76              that for 3-D views the title, if given, will be suppressed.)
77              For non-geographical projections: Give negative scale  (in  -Jx)
78              or  axis  length  (in -JX) to change the direction of increasing
79              coordinates (i.e., to make the y-axis positive down).  For log10
80              axes:   Annotations  can be specified in one of three ways:  (1)
81              stride can be 1, 2, 3, or -n.  Annotations will then occur at 1,
82              1-2-5,  or 1-2-3-4-...-9, respectively; for -n we annotate every
83              n't magnitude.  This option can also be used for the  frame  and
84              grid  intervals.   (2)  An l is appended to the tickinfo string.
85              Then, log10 of the tick value is plotted at every integer  log10
86              value.  (3) A p is appended to the tickinfo string.  Then, anno‐
87              tations appear as 10 raised to log10 of  the  tick  value.   For
88              power  axes:  Annotations  can  be specified in one of two ways:
89              (1) stride sets the regular annotation interval.   (2)  A  p  is
90              appended  to the tickinfo string.  Then, the annotation interval
91              is expected to be in transformed units, but the annotation value
92              will be plotted as untransformed units.  E.g., if stride = 1 and
93              power = 0.5 (i.e., sqrt), then equidistant  annotations  labeled
94              1-4-9... will appear.
95              These GMT parameters can affect the appearance of the map bound‐
96              ary:  ANNOT_MIN_ANGLE,  ANNOT_MIN_SPACING,   ANNOT_FONT_PRIMARY,
97              ANNOT_FONT_SECONDARY,                   ANNOT_FONT_SIZE_PRIMARY,
98              ANNOT_FONT_SIZE_SECONDARY,   ANNOT_OFFSET_PRIMARY,    ANNOT_OFF‐
99              SET_SECONDARY,  BASEMAP_AXES,  BASEMAP_FRAME_RGB,  BASEMAP_TYPE,
100              PLOT_DEGREE_FORMAT, FRAME_PEN, FRAME_WIDTH, GRID_CROSS_SIZE_PRI‐
101              MARY, GRID_PEN_PRIMARY, GRID_CROSS_SIZE_SECONDARY, GRID_PEN_SEC‐
102              ONDARY,     HEADER_FONT,      HEADER_FONT_SIZE,      LABEL_FONT,
103              LABEL_FONT_SIZE,  LINE_STEP, OBLIQUE_ANNOTATION, PLOT_CLOCK_FOR‐
104              MAT,  PLOT_DATE_FORMAT,  TIME_FORMAT_PRIMARY,   TIME_FORMAT_SEC‐
105              ONDARY,  TIME_LANGUAGE,  TIME_WEEK_START, TICK_LENGTH, TICK_PEN,
106              and Y_AXIS_TYPE; see the gmtdefaults man page for details.
107
108       -J     Selects the map projection. The following  character  determines
109              the  projection.  If  the character is upper case then the argu‐
110              ment(s) supplied as scale(s) is interpreted to be the map  width
111              (or  axis  lengths), else the scale argument(s) is the map scale
112              (see its definition for each projection). UNIT is cm,  inch,  or
113              m,  depending  on the MEASURE_UNIT setting in .gmtdefaults4, but
114              this can be overridden on the command line by appending c, i, or
115              m  to the scale or width values.  Append h, +, or - to the given
116              width if you instead want to set map height, the maximum  dimen‐
117              sion,  or  the minimum dimension, respectively [Default is w for
118              width].
119              In case the central meridian is an optional parameter and it  is
120              being  omitted,  then the center of the longitude range given by
121              the -R option is used. The  default  standard  parallel  is  the
122              equator.
123              The  ellipsoid  used in the map projections is user-definable by
124              editing the .gmtdefaults4 file in your home directory.  73  com‐
125              monly used ellipsoids and spheroids are currently supported, and
126              users may also specify their  own  custum  ellipsoid  parameters
127              [Default is WGS-84].  Several GMT parameters can affect the pro‐
128              jection:  ELLIPSOID,  INTERPOLANT,  MAP_SCALE_FACTOR,  and  MEA‐
129              SURE_UNIT; see the gmtdefaults man page for details.
130              Choose  one  of the following projections (The E or C after pro‐
131              jection names  stands  for  Equal-Area  and  Conformal,  respec‐
132              tively):
133
134              CYLINDRICAL PROJECTIONS:
135
136              -Jclon0/lat0/scale or -JClon0/lat0/width (Cassini).
137                     Give  projection  center  lon0/lat0  and scale (1:xxxx or
138                     UNIT/degree).
139
140              -Jcyl_stere/[lon0/[lat0/]]scale                               or
141              -JCyl_stere/[lon0/[lat0/]]width (Cylindrical Stereographic).
142                     Give  central meridian lon0 (optional), standard parallel
143                     lat0 (optional), and  scale  along  parallel  (1:xxxx  or
144                     UNIT/degree).   The standard parallel is typically one of
145                     these (but can be any value):
146                            66.159467 - Miller's modified Gall
147                            55 - Kamenetskiy's First
148                            45 - Gall's Stereographic
149                            30 - Bolshoi Sovietskii  Atlas  Mira  or  Kamenet‐
150                            skiy's Second
151                            0 - Braun's Cylindrical
152
153              -Jj[lon0/]scale  or  -JJ[lon0/]width (Miller Cylindrical Projec‐
154              tion).
155                     Give the  central  meridian  lon0  (optional)  and  scale
156                     (1:xxxx or UNIT/degree).
157
158              -Jm[lon0/[lat0/]]scale or -JM[lon0/[lat0/]]width
159                     Give  central meridian lon0 (optional), standard parallel
160                     lat0 (optional), and  scale  along  parallel  (1:xxxx  or
161                     UNIT/degree).
162
163              -Joparameters (Oblique Mercator [C]).
164                     Specify one of:
165
166                     -Jo[a]lon0/lat0/azimuth/scale                          or
167                     -JO[a]lon0/lat0/azimuth/width
168                            Set  projection  center  lon0/lat0,   azimuth   of
169                            oblique equator, and scale.
170
171                     -Jo[b]lon0/lat0/lon1/lat1/scale                        or
172                     -JO[b]lon0/lat0/lon1/lat1/scale
173                            Set projection center lon0/lat0, another point  on
174                            the oblique equator lon1/lat1, and scale.
175
176                     -Joclon0/lat0/lonp/latp/scale                          or
177                     -JOclon0/lat0/lonp/latp/scale
178                            Set projection center lon0/lat0, pole  of  oblique
179                            projection lonp/latp, and scale.
180
181                     Give scale along oblique equator (1:xxxx or UNIT/degree).
182
183              -Jq[lon0/[lat0/]]scale  or  -JQ[lon0/[lat0/]]width  (Cylindrical
184              Equidistant).
185                     Give the central meridian lon0 (optional), standard  par‐
186                     allel lat0 (optional), and scale (1:xxxx or UNIT/degree).
187                     The standard parallel is typically one of these (but  can
188                     be any value):
189                            61.7 - Grafarend and Niermann, minimum linear dis‐
190                            tortion
191                            50.5 - Ronald Miller Equirectangular
192                            43.5 - Ronald Miller, minimum continental  distor‐
193                            tion
194                            42 - Grafarend and Niermann
195                            37.5 - Ronald Miller, minimum overall distortion
196                            0  - Plate Carree, Simple Cylindrical, Plain/Plane
197                            Chart
198
199              -Jtlon0/[lat0/]scale or -JTlon0/[lat0/]width
200                     Give the central meridian  lon0,  central  parallel  lat0
201                     (optional), and scale (1:xxxx or UNIT/degree).
202
203              -Juzone/scale  or -JUzone/width (UTM - Universal Transverse Mer‐
204              cator [C]).
205                     Give the UTM zone (A,B,1-60[C-X],Y,Z)) and scale  (1:xxxx
206                     or UNIT/degree).
207                     Zones: If C-X not given, prepend - or + to enforce south‐
208                     ern or northern hemisphere conventions [northern if south
209                     > 0].
210
211              -Jy[lon0/[lat0/]]scale  or  -JY[lon0/[lat0/]]width  (Cylindrical
212              Equal-Area [E]).
213                     Give the central meridian lon0 (optional), standard  par‐
214                     allel lat0 (optional), and scale (1:xxxx or UNIT/degree).
215                     The standard parallel is typically one of these (but  can
216                     be any value):
217                            50 - Balthasart
218                            45 - Gall-Peters
219                            37.0666 - Caster
220                            37.4 - Trystan Edwards
221                            37.5 - Hobo-Dyer
222                            30 - Behrman
223                            0 - Lambert (default)
224
225              CONIC PROJECTIONS:
226
227              -Jblon0/lat0/lat1/lat2/scale   or   -JBlon0/lat0/lat1/lat2/width
228              (Albers [E]).
229                     Give projection center lon0/lat0, two standard  parallels
230                     lat1/lat2, and scale (1:xxxx or UNIT/degree).
231
232              -Jdlon0/lat0/lat1/lat2/scale   or   -JDlon0/lat0/lat1/lat2/width
233              (Conic Equidistant)
234                     Give projection center lon0/lat0, two standard  parallels
235                     lat1/lat2, and scale (1:xxxx or UNIT/degree).
236
237              -Jllon0/lat0/lat1/lat2/scale   or   -JLlon0/lat0/lat1/lat2/width
238              (Lambert [C])
239                     Give origin lon0/lat0, two standard parallels  lat1/lat2,
240                     and scale along these (1:xxxx or UNIT/degree).
241
242              -Jpoly/[lon0/[lat0/]]scale or -JPoly/[lon0/[lat0/]]width ((Amer‐
243              ican) Polyconic).
244                     Give the central meridian lon0 (optional), reference par‐
245                     allel lat0 (optional, default = equator), and scale along
246                     central meridian (1:xxxx or UNIT/degree).
247
248              AZIMUTHAL PROJECTIONS:
249
250              Except for polar aspects, -Rw/e/s/n will be reset to  -Rg.   Use
251              -R<...>r for smaller regions.
252
253              -Jalon0/lat0[/horizon]/scale   or   -JAlon0/lat0[/horizon]/width
254              (Lambert [E]).
255                     lon0/lat0 specifies the projection center.  horizon spec‐
256                     ifies   the  max  distance  from  projection  center  (in
257                     degrees, <= 180, default 90).  Give scale  as  1:xxxx  or
258                     radius/lat,  where radius is distance in UNIT from origin
259                     to the oblique latitude lat.
260
261              -Jelon0/lat0[/horizon]/scale   or   -JElon0/lat0[/horizon]/width
262              (Azimuthal Equidistant).
263                     lon0/lat0 specifies the projection center.  horizon spec‐
264                     ifies  the  max  distance  from  projection  center   (in
265                     degrees,  <=  180, default 180).  Give scale as 1:xxxx or
266                     radius/lat, where radius is distance in UNIT from  origin
267                     to the oblique latitude lat.
268
269              -Jflon0/lat0[/horizon]/scale   or   -JFlon0/lat0[/horizon]/width
270              (Gnomonic).
271                     lon0/lat0 specifies the projection center.  horizon spec‐
272                     ifies   the  max  distance  from  projection  center  (in
273                     degrees, < 90, default 60).   Give  scale  as  1:xxxx  or
274                     radius/lat,  where radius is distance in UNIT from origin
275                     to the oblique latitude lat.
276
277              -Jglon0/lat0[/horizon]/scale   or   -JGlon0/lat0[/horizon]/width
278              (Orthographic).
279                     lon0/lat0 specifies the projection center.  horizon spec‐
280                     ifies  the  max  distance  from  projection  center   (in
281                     degrees,  <=  90,  default  90).  Give scale as 1:xxxx or
282                     radius/lat, where radius is distance in UNIT from  origin
283                     to the oblique latitude lat.
284
285              -Jglon0/lat0/altitude/azimuth/tilt/twist/Width/Height/scale   or
286              -JGlon0/lat0/altitude/azimuth/tilt/twist/Width/Height/width
287              (General Perspective).
288                     lon0/lat0  specifies  the projection center.  altitude is
289                     the height (in km)  of  the  viewpoint  above  local  sea
290                     level.   If altitude is less than 10, then it is the dis‐
291                     tance from the center of the earth to  the  viewpoint  in
292                     earth  radii.  If  altitude has a suffix r then it is the
293                     radius from  the  center  of  the  earth  in  kilometers.
294                     azimuth  is  measured to the east of north of view.  tilt
295                     is the upward tilt of the plane of projection. If tilt is
296                     negative,  then the viewpoint is centered on the horizon.
297                     Further, specify the clockwise twist, Width,  and  Height
298                     of  the  viewpoint  in  degrees.  Give scale as 1:xxxx or
299                     radius/lat, where radius is distance in UNIT from  origin
300                     to the oblique latitude lat.
301
302              -Jslon0/lat0[/horizon]/scale   or   -JSlon0/lat0[/horizon]/width
303              (General Stereographic [C]).
304                     lon0/lat0 specifies the projection center.  horizon spec‐
305                     ifies   the  max  distance  from  projection  center  (in
306                     degrees, < 180, default 90).  Give scale as 1:xxxx  (true
307                     at  pole) or lat0/1:xxxx (true at standard parallel lat0)
308                     or radius/lat (radius in UNIT from origin to the  oblique
309                     latitude  lat).   Note  if 1:xxxx is used then to specify
310                     horizon you must also specify the lat0 as +-90  to  avoid
311                     ambiguity.
312
313              MISCELLANEOUS PROJECTIONS:
314
315              -Jh[lon0/]scale or -JH[lon0/]width (Hammer [E]).
316                     Give the central meridian lon0 (optional) and scale along
317                     equator (1:xxxx or UNIT/degree).
318
319              -Ji[lon0/]scale or -JI[lon0/]width (Sinusoidal [E]).
320                     Give the central meridian lon0 (optional) and scale along
321                     equator (1:xxxx or UNIT/degree).
322
323              -Jkf[lon0/]scale or -JKf[lon0/]width (Eckert IV) [E]).
324                     Give the central meridian lon0 (optional) and scale along
325                     equator (1:xxxx or UNIT/degree).
326
327              -Jk[s][lon0/]scale or -JK[s][lon0/]width (Eckert VI) [E]).
328                     Give the central meridian lon0 (optional) and scale along
329                     equator (1:xxxx or UNIT/degree).
330
331              -Jn[lon0/]scale or -JN[lon0/]width (Robinson).
332                     Give the central meridian lon0 (optional) and scale along
333                     equator (1:xxxx or UNIT/degree).
334
335              -Jr[lon0/]scale -JR[lon0/]width (Winkel Tripel).
336                     Give the central meridian lon0 (optional) and scale along
337                     equator (1:xxxx or UNIT/degree).
338
339              -Jv[lon0/]scale or -JV[lon0/]width (Van der Grinten).
340                     Give the central meridian lon0 (optional) and scale along
341                     equator (1:xxxx or UNIT/degree).
342
343              -Jw[lon0/]scale or -JW[lon0/]width (Mollweide [E]).
344                     Give the central meridian lon0 (optional) and scale along
345                     equator (1:xxxx or UNIT/degree).
346
347              NON-GEOGRAPHICAL PROJECTIONS:
348
349              -Jp[a]scale[/origin][r|z]  or  -JP[a]width[/origin][r|z]  (Polar
350              coordinates (theta,r))
351                     Optionally insert a after -Jp [ or -JP] for  azimuths  CW
352                     from North instead of directions CCW from East [Default].
353                     Optionally append /origin in degrees to indicate an angu‐
354                     lar offset [0]).  Finally, append r if r is elevations in
355                     degrees (requires s >= 0 and n <= 90) or z if you want to
356                     annotate  depth rather than radius [Default].  Give scale
357                     in UNIT/r-unit.
358
359              -Jxx-scale[/y-scale]  or  -JXwidth[/height]  (Linear,  log,  and
360              power scaling)
361                     Give  x-scale  (1:xxxx  or  UNIT/x-unit)  and/or  y-scale
362                     (1:xxxx or UNIT/y-unit); or specify width  and/or  height
363                     in UNIT.  y-scale=x-scale if not specified separately and
364                     using 1:xxxx  implies  that  x-unit  and  y-unit  are  in
365                     meters.   Use  negative scale(s) to reverse the direction
366                     of an axis (e.g., to have y be positive down). Set height
367                     or  width to 0 to have it recomputed based on the implied
368                     scale of the other axis.  Optionally, append to  x-scale,
369                     y-scale, width or height one of the following:
370
371                     d      Data are geographical coordinates (in degrees).
372
373                     l      Take log10 of values before scaling.
374
375                     ppower Raise values to power before scaling.
376
377                     t      Input coordinates are time relative to TIME_EPOCH.
378
379                     T      Input coordinates are absolute time.
380
381                     Default  axis  lengths  (see  gmtdefaults) can be invoked
382                     using -JXh (for landscape); -JXv (for portrait) will swap
383                     the  x-  and  y-axis  lengths.  The default unit for this
384                     installation is either cm or inch, as defined in the file
385                     share/gmt.conf.  However,  you may change this by editing
386                     your .gmtdefaults4 file(s).
387
388       -R     xmin, xmax, ymin, and ymax specify the Region of interest.   For
389              geographic  regions,  these  limits  correspond  to  west, east,
390              south, and north and you may specify them in decimal degrees  or
391              in  [+-]dd:mm[:ss.xxx][W|E|S|N]  format.  Append r if lower left
392              and upper right map coordinates are given  instead  of  w/e/s/n.
393              The  two  shorthands  -Rg and -Rd stand for global domain (0/360
394              and -180/+180 in longitude respectively, with -90/+90  in  lati‐
395              tude).  Alternatively, specify the name of an existing grid file
396              and the -R settings (and grid spacing, if applicable) are copied
397              from  the  grid.   For  calendar time coordinates you may either
398              give (a) relative time (relative to the selected TIME_EPOCH  and
399              in  the  selected TIME_UNIT; append t to -JX|x), or (b) absolute
400              time of the form [date]T[clock] (append T to -JX|x).   At  least
401              one of date and clock must be present; the T is always required.
402              The date string must be of the form [-]yyyy[-mm[-dd]] (Gregorian
403              calendar) or yyyy[-Www[-d]] (ISO week calendar), while the clock
404              string must be of the form hh:mm:ss[.xxx].  The  use  of  delim‐
405              iters  and their type and positions must be exactly as indicated
406              (however, input, output and plot formats are  customizable;  see
407              gmtdefaults).
408

OPTIONS

410       No space between the option flag and the associated arguments.
411
412       -E     Sets  the  viewpoint's  azimuth  and  elevation (for perspective
413              view) [180/90].  For frames used for animation, you may want  to
414              append  +  to  fix  the center of your data domain (or specify a
415              particular world coordinate  point  with  +wlon0/lat[/z])  which
416              will  project  to  the  center of your page size (or specify the
417              coordinates of the projected veiw point with +vx0/y0).
418
419       -G     Select fill shade, color  or  pattern  for  the  inside  of  the
420              basemap  [Default  is  no  fill  color].   (See  SPECIFYING FILL
421              below).
422
423       -Jz    Sets the vertical scaling (for 3-D maps).  Same syntax as -Jx.
424
425       -K     More PostScript code will be appended later [Default  terminates
426              the plot system].
427
428       -L     Draws  a  simple  map  scale  centered on lon0/lat0.  Use -Lx to
429              specify x/y position instead.  Scale is calculated  at  latitude
430              slat  (optionally  supply longitude slon for oblique projections
431              [Default is central meridian]), length is in km [miles if  m  is
432              appended;  nautical  miles  if  n is appended]. Use -Lf to get a
433              "fancy" scale [Default  is  plain].  Append  +l  to  select  the
434              default  label which equals the distance unit (km, miles, nauti‐
435              cal miles) and is justified on top of  the  scale  [t].   Change
436              this  by  giving  your own label (append +llabel).  Change label
437              justification  with  +jjustification   (choose   among   l(eft),
438              r(ight),  t(op),  and b(ottom)).  Apply +u to append the unit to
439              all distance annotations along the scale.  If you want to  place
440              a  rectangle  behind  the  scale,  specify suitable +ppen and/or
441              +ffill parameters.  (See SPECIFYING  PENS  and  SPECIFYING  FILL
442              below).
443
444       -O     Selects  Overlay  plot mode [Default initializes a new plot sys‐
445              tem].
446
447       -P     Selects Portrait plotting mode [Default is Landscape, see gmtde‐
448              faults to change this].
449
450       -T     Draws  a simple map directional rose centered on lon0/lat0.  Use
451              -Tx to specify x/y position instead.  The size is  the  diameter
452              of  the rose, and optional label information can be specified to
453              override the default values of W, E, S, and N (Give ::  to  sup‐
454              press  all  labels).   The  default [plain] map rose only labels
455              north.  Use -Tf to get a "fancy" rose, and specify in info  what
456              you want drawn.  The default [1] draws the two principal E-W, N-
457              S orientations, 2 adds the two intermediate NW-SE and NE-SW ori‐
458              entations,  while  3  adds the eight minor orientations WNW-ESE,
459              NNW-SSE, NNE-SSW, and ENE-WSW.  For  a  magnetic  compass  rose,
460              specify -Tm.  If given, info must be the two parameters dec/dla‐
461              bel, where dec is the magnetic declination and dlabel is a label
462              for  the  magnetic  compass  needle (specify - to format a label
463              from dec).  Then, both directions  to  geographic  and  magnetic
464              north  are  plotted  [Default is geographic only].  If the north
465              label is * then a north star is plotted  instead  of  the  north
466              label.   Annotation  and  two  levels of tick intervals for geo‐
467              graphic and magnetic directions are 10/5/1 and  30/5/1  degrees,
468              respectively;    override    these    settings    by   appending
469              +gints[/mints].   Color  and  pen  attributes  are  taken   from
470              COLOR_BACKGROUND  and  TICK_PEN, respectively, while label fonts
471              and sizes follow the usual annotation, label,  and  header  font
472              settings.
473
474       -U     Draw Unix System time stamp on plot.  By adding just/dx/dy/, the
475              user may specify the justification of the stamp  and  where  the
476              stamp  should  fall on the page relative to lower left corner of
477              the plot.  For example, BL/0/0 will align the lower left  corner
478              of  the  time  stamp  with  the  lower  left corner of the plot.
479              Optionally, append a label, or c (which will  plot  the  command
480              string.).   The  GMT  parameters  UNIX_TIME,  UNIX_TIME_POS, and
481              UNIX_TIME_FORMAT can affect the appearance; see the  gmtdefaults
482              man page for details.  The time string will be in the locale set
483              by the environment variable TZ (generally local time).
484
485       -V     Selects verbose mode, which will send progress reports to stderr
486              [Default runs "silently"].
487
488       -X -Y  Shift  plot origin relative to the current origin by (x-shift,y-
489              shift) and optionally append the length unit (c, i, m, p).   You
490              can  prepend a to shift the origin back to the original position
491              after plotting, or prepend  r [Default]  to  reset  the  current
492              origin  to the new location.  If -O is used then the default (x-
493              shift,y-shift) is (0,0), otherwise it is (r1i, r1i)  or  (r2.5c,
494              r2.5c).  Alternatively, give c to align the center coordinate (x
495              or y) of the plot with the center of the page based  on  current
496              page size.
497
498       -Z     For  3-D  projections:  Sets the z-level of the basemap [Default
499              is at the bottom end of the z-axis].
500
501       -c     Specifies the number of plot copies. [Default is 1].
502
503   SPECIFYING PENS
504       pen    The attributes of lines and symbol outlines as defined by pen is
505              a  comma  delimetered  list of width, color and texture, each of
506              which is optional.  width can be indicated as a measure (points,
507              centimeters, inches) or as faint, thin[ner|nest], thick[er|est],
508              fat[ter|test], or obese.  color specifies a gray shade or  color
509              (see  SPECIFYING  COLOR  below).   texture  is  a combination of
510              dashes `-' and dots `.'.
511
512   SPECIFYING FILL
513       fill   The attribute fill specifies the solid shade or solid color (see
514              SPECIFYING  COLOR  below)  or the pattern used for filling poly‐
515              gons.  Patterns are specified  as  pdpi/pattern,  where  pattern
516              gives the number of the built-in pattern (1-90) or the name of a
517              Sun 1-, 8-, or 24-bit raster file. The dpi sets  the  resolution
518              of  the  image.  For 1-bit rasters: use Pdpi/pattern for inverse
519              video, or append :Fcolor[B[color]] to specify  fore-  and  back‐
520              ground  colors  (use color = - for transparency).  See GMT Cook‐
521              book & Technical Reference Appendix E for information  on  indi‐
522              vidual patterns.
523
524   SPECIFYING COLOR
525       color  The  color  of  lines,  areas and patterns can be specified by a
526              valid color name; by a gray shade (in the  range  0-255);  by  a
527              decimal  color  code  (r/g/b, each in range 0-255; h-s-v, ranges
528              0-360, 0-1, 0-1; or c/m/y/k, each in range 0-1); or by  a  hexa‐
529              decimal  color code (#rrggbb, as used in HTML).  See the gmtcol‐
530              ors manpage for more information and a full list of color names.
531

EXAMPLES

533       The following section illustrates the use of the options by giving some
534       examples  for  the  available  map projections.  Note how scales may be
535       given in several different ways depending on the projection.  Also note
536       the  use  of  upper  case  letters  to specify map width instead of map
537       scale.
538

NON-GEOGRAPHICAL PROJECTIONS

540   Linear x-y plot
541       To make a linear x/y frame with all axes, but with only left and bottom
542       axes  annotated,  using xscale = yscale = 1.0, ticking every 1 unit and
543       annotating every 2, and using xlabel = "Distance" and ylabel =  "No  of
544       samples", use
545
546       psbasemap  -R0/9/0/5 -Jx1 -Bf1a2:Distance:/:"No of samples":WeSn > lin‐
547       ear.ps
548
549   Log-log plot
550       To make a log-log frame with only the left and bottom axes,  where  the
551       x-axis  is  25 cm and annotated every 1-2-5 and the y-axis is 15 cm and
552       annotated every power of 10 but has tickmarks every 0.1, run
553
554       psbasemap       -R1/10000/1e20/1e25       -JX25cl/15cl        -B2:Wave‐
555       length:/a1pf3:Power:WS > loglog.ps
556
557   Power axes
558       To  design  an  axis  system to be used for a depth-sqrt(age) plot with
559       depth positive down, ticked and annotated every 500m,  and  ages  anno‐
560       tated at 1 my, 4 my, 9 my etc, use
561
562       psbasemap -R0/100/0/5000 -Jx1p0.5/-0.001 -B1p:"Crustal age":/500:Depth:
563       > power.ps
564
565   Polar (theta,r) plot
566       For a base map for use with polar coordinates, where the radius from  0
567       to  1000 should correspond to 3 inch and with gridlines and ticks every
568       30 degrees and 100 units, use
569
570       psbasemap -R0/360/0/1000 -JP6i -B30p/100 > polar.ps
571

CYLINDRICAL MAP PROJECTIONS

573   Cassini
574       A 10-cm-wide basemap using the Cassini projection may be obtained by
575
576       psbasemap   -R20/50/20/35   -JC35/28/10c   -P   OPR(B)5g5:.Cassini:   >
577       cassini.ps
578
579   Mercator [conformal]
580       A  Mercator map with scale 0.025 inch/degree along equator, and showing
581       the length of 5000 km along the equator (centered on 1/1 inch), may  be
582       plotted as
583
584       psbasemap  -R90/180/-50/50 -Jm0.025i -B30g30:.Mercator: -Lx1i/1i/0/5000
585       > mercator.ps
586
587   Miller
588       A global Miller cylindrical map with scale 1:200,000,000 may be plotted
589       as
590
591       psbasemap -Rg -Jj180/1:200000000 -B30g30:.Miller: > miller.ps
592
593   Oblique Mercator [conformal]
594       To  create  a  page-size  global oblique Mercator basemap for a pole at
595       (90,30) with gridlines every 30 degrees, run
596
597       psbasemap  -R0/360/-70/70 -Joc0/0/90/30/0.064cd -B30g30:."Oblique  Mer‐
598       cator": > oblmerc.ps
599
600   Transverse Mercator [conformal]
601       A regular Transverse Mercator basemap for some region may look like
602
603       psbasemap   -R69:30/71:45/-17/-15:15   -Jt70/1:1000000   -B15m:."Survey
604       area": -P > transmerc.ps
605
606   Equidistant Cylindrical Projection
607       This projection only needs the central meridian and  scale.   A  25  cm
608       wide global basemap centered on the 130E meridian is made by
609
610       psbasemap  -R-50/310/-90/90  -JQ130/25c -B30g30:."Equidistant Cylindri‐
611       cal": > cyl_eqdist.ps
612
613   Universal Transverse Mercator [conformal]
614       To use this projection you must know the UTM zone number, which defines
615       the central meridian.  A UTM basemap for Indo-China can be plotted as
616
617       psbasemap -R95/5/108/20r -Ju46/1:10000000 -B3g3:.UTM: > utm.ps
618
619   Cylindrical Equal-Area
620       First  select  which of the cylindrical equal-area projections you want
621       by deciding on the standard parallel.  Here  we  will  use  45  degrees
622       which  gives  the Gall-Peters projection.  A 9 inch wide global basemap
623       centered on the Pacific is made by
624
625       psbasemap -Rg -JY180/45/9i -B30g30:.Gall-Peters: > gall-peters.ps
626

CONIC MAP PROJECTIONS

628   Albers [equal-area]
629       A basemap for middle Europe may be created by
630
631       psbasemap  -R0/90/25/55  -Jb45/20/32/45/0.25c  -B10g10:."Albers  Equal-
632       area": > albers.ps
633
634   Lambert [conformal]
635       Another basemap for middle Europe may be created by
636
637       psbasemap  -R0/90/25/55 -Jl45/20/32/45/0.1i -B10g10:."Lambert Conformal
638       Conic": > lambertc.ps
639
640   Equidistant
641       Yet another basemap of width 6 inch for middle Europe may be created by
642
643       psbasemap -R0/90/25/55 -JD45/20/32/45/6i -B10g10:."Equidistant  conic":
644       > econic.ps
645
646   Polyconic
647       A basemap for north America may be created by
648
649       psbasemap -R-180/-20/0/90 -JPoly/4i -B30g10/10g10:."Polyconic": > poly‐
650       conic.ps
651

AZIMUTHAL MAP PROJECTIONS

653   Lambert [equal-area]
654       A 15-cm-wide global view of the world from the  vantage  point  -80/-30
655       will give the following basemap:
656
657       psbasemap -Rg -JA-80/-30/15c -B30g30/15g15:."Lambert Azimuthal": > lam‐
658       berta.ps
659
660       Follow the instructions for stereographic projection  if  you  want  to
661       impose  rectangular boundaries on the azimuthal equal-area map but sub‐
662       stitute -Ja for -Js.
663
664   Equidistant
665       A 15-cm-wide global map  in  which  distances  from  the  center  (here
666       125/10) to any point is true can be obtained by:
667
668       psbasemap -Rg -JE125/10/15c -B30g30/15g15:.Equidistant: > equi.ps
669
670   Gnomonic
671       A  view of the world from the vantage point -100/40 out to a horizon of
672       60 degrees from the center can be made using the Gnomonic projection:
673
674       psbasemap -Rg -JF-100/40/60/6i -B30g30/15g15:.Gnomonic: > gnomonic.ps
675
676   Orthographic
677       A global perspective (from infinite distance) view of  the  world  from
678       the vantage point 125/10 will give the following 6-inch-wide basemap:
679
680       psbasemap -Rg -JG125/10/6i -B30g30/15g15:.Orthographic: > ortho.ps
681
682   General Perspective
683       The -JG option can be used in a more generalized form, specifying alti‐
684       tude above the surface, width and height of the view point,  and  twist
685       and  tilt.   A  view  from  160 km above -74/41.5 with a tilt of 55 and
686       azimuth of 210 degrees, and limiting the viewpoint to 30 degrees  width
687       and height will product a 6-inch-wide basemap:
688
689       psbasemap  -Rg -JG-74/41.5/160/210/55/30/30/6i -B5g1/5g1:."General Per‐
690       spective": > genper.ps
691
692   Stereographic [conformal]
693       To make a polar stereographic projection basemap with radius = 12 cm to
694       -60  degree  latitude, with plot title "Salinity measurements", using 5
695       degrees annotation/tick interval and 1 degree gridlines, run
696
697       psbasemap -R-45/45/-90/-60 -Js0/-90/12c/-60  -B5g5:."Salinity  measure‐
698       ments": > stereo1.ps
699
700       To  make a 12-cm-wide stereographic basemap for Australia from an arbi‐
701       trary view point (not the poles), and use a  rectangular  boundary,  we
702       must  give  the  pole  for  the new projection and use the -R option to
703       indicate the lower left and upper right corners (in lon/lat) that  will
704       define  our rectangle.  We choose a pole at 130/-30 and use 100/-45 and
705       160/-5 as our corners.  The command becomes
706
707       psbasemap  -R100/-45/160/-5r   -JS130/-30/12c   -B30g30/15g15:."General
708       Stereographic View": > stereo2.ps
709

MISCELLANEOUS MAP PROJECTIONS

711   Hammer [equal-area]
712       The  Hammer  projection  is  mostly  used  for global maps and thus the
713       spherical form is used.  To get a world map centered on Greenwich at  a
714       scale of 1:200000000, use
715
716       psbasemap -Rd -Jh0/1:200000000 -B30g30/15g15:.Hammer: > hammer.ps
717
718   Sinusoidal [equal-area]
719       To  make  a  sinusoidal  world  map centered on Greenwich, with a scale
720       along the equator of 0.02 inch/degree, use
721
722       psbasemap -Rd -Ji0/0.02i -B30g30/15g15:.Sinusoidal: > sinus1.ps
723
724       To make an interrupted sinusoidal world map with breaks at  160W,  20W,
725       and  60E,  with  a scale along the equator of 0.02 inch/degree, run the
726       following sequence of commands:
727
728       psbasemap  -R-160/-20/-90/90  -Ji-90/0.02i   -B30g30/15g15Wesn   -K   >
729       sinus_i.ps
730       psbasemap -R-20/60/-90/90 -Ji20/0.02i -B30g30/15g15wesn -O -K -X2.8i >>
731       sinus_i.ps
732       psbasemap -R60/200/-90/90 -Ji130/0.02i -B30g30/15g15wEsn -O  -X1.6i  >>
733       sinus_i.ps
734
735   Eckert IV [equal-area]
736       Pseudo-cylindrical projection typically used for global maps only.  Set
737       the central longitude and scale, e.g.,
738
739       psbasemap -Rg -Jkf180/0.064c -B30g30/15g15:."Eckert IV": > eckert4.ps
740
741   Eckert VI [equal-area]
742       Another pseudo-cylindrical projection typically used  for  global  maps
743       only.  Set the central longitude and scale, e.g.,
744
745       psbasemap -Rg -Jks180/0.064c -B30g30/15g15:."Eckert VI": > eckert6.ps
746
747   Robinson
748       Projection  designed to make global maps "look right".  Set the central
749       longitude and width, e.g.,
750
751       psbasemap -Rd -JN0/8i -B30g30/15g15:.Robinson: > robinson.ps
752
753   Winkel Tripel
754       Yet another projection typically used for global maps  only.   You  can
755       set the central longitude, e.g.,
756
757       psbasemap  -R90/450/-90/90 -JR270/25c -B30g30/15g15:."Winkel Tripel": >
758       winkel.ps
759
760   Mollweide [equal-area]
761       The Mollweide projection is also mostly used for global maps  and  thus
762       the  spherical form is used.  To get a 25-cm-wide world map centered on
763       the Dateline:
764
765       psbasemap -Rg -JW180/25c -B30g30/15g15:.Mollweide: > mollweide.ps
766
767   Van der Grinten
768       The Van der Grinten projection is also mostly used for global maps  and
769       thus  the  spherical form is used.  To get a 7-inch-wide world map cen‐
770       tered on the Dateline:
771
772       psbasemap -Rg -JV180/7i -B30g30/15g15:."Van der Grinten": > grinten.ps
773

RESTRICTIONS

775       For some projections, a spherical earth is implicitly assumed.  A warn‐
776       ing  will  notify the user if -V is set. Also note that plot titles are
777       not plotted if -E is given.
778

BUGS

780       The -B option is somewhat complicated to explain and comprehend.   How‐
781       ever, it is fairly simple for most applications (see examples).
782

SEE ALSO

784       gmtcolors(5), gmtdefaults(1), GMT(1)
785
786
787
788GMT 4.5.6                         10 Mar 2011                     PSBASEMAP(1)
Impressum