1PERLEBCDIC(1) Perl Programmers Reference Guide PERLEBCDIC(1)
2
3
4
6 perlebcdic - Considerations for running Perl on EBCDIC platforms
7
9 An exploration of some of the issues facing Perl programmers on EBCDIC
10 based computers. We do not cover localization, internationalization,
11 or multi byte character set issues other than some discussion of UTF-8
12 and UTF-EBCDIC.
13
14 Portions that are still incomplete are marked with XXX.
15
17 ASCII
18 The American Standard Code for Information Interchange (ASCII or US-
19 ASCII) is a set of integers running from 0 to 127 (decimal) that imply
20 character interpretation by the display and other systems of computers.
21 The range 0..127 can be covered by setting the bits in a 7-bit binary
22 digit, hence the set is sometimes referred to as a "7-bit ASCII".
23 ASCII was described by the American National Standards Institute
24 document ANSI X3.4-1986. It was also described by ISO 646:1991 (with
25 localization for currency symbols). The full ASCII set is given in the
26 table below as the first 128 elements. Languages that can be written
27 adequately with the characters in ASCII include English, Hawaiian,
28 Indonesian, Swahili and some Native American languages.
29
30 There are many character sets that extend the range of integers from
31 0..2**7-1 up to 2**8-1, or 8 bit bytes (octets if you prefer). One
32 common one is the ISO 8859-1 character set.
33
34 ISO 8859
35 The ISO 8859-$n are a collection of character code sets from the
36 International Organization for Standardization (ISO) each of which adds
37 characters to the ASCII set that are typically found in European
38 languages many of which are based on the Roman, or Latin, alphabet.
39
40 Latin 1 (ISO 8859-1)
41 A particular 8-bit extension to ASCII that includes grave and acute
42 accented Latin characters. Languages that can employ ISO 8859-1
43 include all the languages covered by ASCII as well as Afrikaans,
44 Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian,
45 Portuguese, Spanish, and Swedish. Dutch is covered albeit without the
46 ij ligature. French is covered too but without the oe ligature.
47 German can use ISO 8859-1 but must do so without German-style quotation
48 marks. This set is based on Western European extensions to ASCII and
49 is commonly encountered in world wide web work. In IBM character code
50 set identification terminology ISO 8859-1 is also known as CCSID 819
51 (or sometimes 0819 or even 00819).
52
53 EBCDIC
54 The Extended Binary Coded Decimal Interchange Code refers to a large
55 collection of slightly different single and multi byte coded character
56 sets that are different from ASCII or ISO 8859-1 and typically run on
57 host computers. The EBCDIC encodings derive from 8 bit byte extensions
58 of Hollerith punched card encodings. The layout on the cards was such
59 that high bits were set for the upper and lower case alphabet
60 characters [a-z] and [A-Z], but there were gaps within each Latin
61 alphabet range.
62
63 Some IBM EBCDIC character sets may be known by character code set
64 identification numbers (CCSID numbers) or code page numbers. Leading
65 zero digits in CCSID numbers within this document are insignificant.
66 E.g. CCSID 0037 may be referred to as 37 in places.
67
68 Perl can be compiled on platforms that run any of three commonly used
69 EBCDIC character sets, listed below.
70
71 The 13 variant characters
72 Among IBM EBCDIC character code sets there are 13 characters that are
73 often mapped to different integer values. Those characters are known
74 as the 13 "variant" characters and are:
75
76 \ [ ] { } ^ ~ ! # | $ @ `
77
78 When Perl is compiled for a platform, it looks at some of these
79 characters to guess which EBCDIC character set the platform uses, and
80 adapts itself accordingly to that platform. If the platform uses a
81 character set that is not one of the three Perl knows about, Perl will
82 either fail to compile, or mistakenly and silently choose one of the
83 three. They are:
84
85 0037
86 Character code set ID 0037 is a mapping of the ASCII plus Latin-1
87 characters (i.e. ISO 8859-1) to an EBCDIC set. 0037 is used in North
88 American English locales on the OS/400 operating system that runs on
89 AS/400 computers. CCSID 37 differs from ISO 8859-1 in 237 places, in
90 other words they agree on only 19 code point values.
91
92 1047
93 Character code set ID 1047 is also a mapping of the ASCII plus Latin-1
94 characters (i.e. ISO 8859-1) to an EBCDIC set. 1047 is used under Unix
95 System Services for OS/390 or z/OS, and OpenEdition for VM/ESA. CCSID
96 1047 differs from CCSID 0037 in eight places.
97
98 POSIX-BC
99 The EBCDIC code page in use on Siemens' BS2000 system is distinct from
100 1047 and 0037. It is identified below as the POSIX-BC set.
101
102 Unicode code points versus EBCDIC code points
103 In Unicode terminology a code point is the number assigned to a
104 character: for example, in EBCDIC the character "A" is usually assigned
105 the number 193. In Unicode the character "A" is assigned the number
106 65. This causes a problem with the semantics of the pack/unpack "U",
107 which are supposed to pack Unicode code points to characters and back
108 to numbers. The problem is: which code points to use for code points
109 less than 256? (for 256 and over there's no problem: Unicode code
110 points are used) In EBCDIC, for the low 256 the EBCDIC code points are
111 used. This means that the equivalences
112
113 pack("U", ord($character)) eq $character
114 unpack("U", $character) == ord $character
115
116 will hold. (If Unicode code points were applied consistently over all
117 the possible code points, pack("U",ord("A")) would in EBCDIC equal A
118 with acute or chr(101), and unpack("U", "A") would equal 65, or non-
119 breaking space, not 193, or ord "A".)
120
121 Remaining Perl Unicode problems in EBCDIC
122 · Many of the remaining problems seem to be related to case-
123 insensitive matching
124
125 · The extensions Unicode::Collate and Unicode::Normalized are not
126 supported under EBCDIC, likewise for the encoding pragma.
127
128 Unicode and UTF
129 UTF stands for "Unicode Transformation Format". UTF-8 is an encoding
130 of Unicode into a sequence of 8-bit byte chunks, based on ASCII and
131 Latin-1. The length of a sequence required to represent a Unicode code
132 point depends on the ordinal number of that code point, with larger
133 numbers requiring more bytes. UTF-EBCDIC is like UTF-8, but based on
134 EBCDIC.
135
136 You may see the term "invariant" character or code point. This simply
137 means that the character has the same numeric value when encoded as
138 when not. (Note that this is a very different concept from "The 13
139 variant characters" mentioned above.) For example, the ordinal value
140 of 'A' is 193 in most EBCDIC code pages, and also is 193 when encoded
141 in UTF-EBCDIC. All other code points occupy at least two bytes when
142 encoded. In UTF-8, the code points corresponding to the lowest 128
143 ordinal numbers (0 - 127: the ASCII characters) are invariant. In UTF-
144 EBCDIC, there are 160 invariant characters. (If you care, the EBCDIC
145 invariants are those characters which have ASCII equivalents, plus
146 those that correspond to the C1 controls (80..9f on ASCII platforms).)
147
148 A string encoded in UTF-EBCDIC may be longer (but never shorter) than
149 one encoded in UTF-8.
150
151 Using Encode
152 Starting from Perl 5.8 you can use the standard new module Encode to
153 translate from EBCDIC to Latin-1 code points. Encode knows about more
154 EBCDIC character sets than Perl can currently be compiled to run on.
155
156 use Encode 'from_to';
157
158 my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );
159
160 # $a is in EBCDIC code points
161 from_to($a, $ebcdic{ord '^'}, 'latin1');
162 # $a is ISO 8859-1 code points
163
164 and from Latin-1 code points to EBCDIC code points
165
166 use Encode 'from_to';
167
168 my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );
169
170 # $a is ISO 8859-1 code points
171 from_to($a, 'latin1', $ebcdic{ord '^'});
172 # $a is in EBCDIC code points
173
174 For doing I/O it is suggested that you use the autotranslating features
175 of PerlIO, see perluniintro.
176
177 Since version 5.8 Perl uses the new PerlIO I/O library. This enables
178 you to use different encodings per IO channel. For example you may use
179
180 use Encode;
181 open($f, ">:encoding(ascii)", "test.ascii");
182 print $f "Hello World!\n";
183 open($f, ">:encoding(cp37)", "test.ebcdic");
184 print $f "Hello World!\n";
185 open($f, ">:encoding(latin1)", "test.latin1");
186 print $f "Hello World!\n";
187 open($f, ">:encoding(utf8)", "test.utf8");
188 print $f "Hello World!\n";
189
190 to get four files containing "Hello World!\n" in ASCII, CP 37 EBCDIC,
191 ISO 8859-1 (Latin-1) (in this example identical to ASCII since only
192 ASCII characters were printed), and UTF-EBCDIC (in this example
193 identical to normal EBCDIC since only characters that don't differ
194 between EBCDIC and UTF-EBCDIC were printed). See the documentation of
195 Encode::PerlIO for details.
196
197 As the PerlIO layer uses raw IO (bytes) internally, all this totally
198 ignores things like the type of your filesystem (ASCII or EBCDIC).
199
201 The following tables list the ASCII and Latin 1 ordered sets including
202 the subsets: C0 controls (0..31), ASCII graphics (32..7e), delete (7f),
203 C1 controls (80..9f), and Latin-1 (a.k.a. ISO 8859-1) (a0..ff). In the
204 table non-printing control character names as well as the Latin 1
205 extensions to ASCII have been labelled with character names roughly
206 corresponding to The Unicode Standard, Version 3.0 albeit with
207 substitutions such as s/LATIN// and s/VULGAR// in all cases, s/CAPITAL
208 LETTER// in some cases, and s/SMALL LETTER ([A-Z])/\l$1/ in some other
209 cases (the "charnames" pragma names unfortunately do not list explicit
210 names for the C0 or C1 control characters). The "names" of the C1
211 control set (128..159 in ISO 8859-1) listed here are somewhat
212 arbitrary. The differences between the 0037 and 1047 sets are flagged
213 with ***. The differences between the 1047 and POSIX-BC sets are
214 flagged with ###. All ord() numbers listed are decimal. If you would
215 rather see this table listing octal values then run the table (that is,
216 the pod version of this document since this recipe may not work with a
217 pod2_other_format translation) through:
218
219 recipe 0
220
221 perl -ne 'if(/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
222 -e '{printf("%s%-9o%-9o%-9o%o\n",$1,$2,$3,$4,$5)}' perlebcdic.pod
223
224 If you want to retain the UTF-x code points then in script form you
225 might want to write:
226
227 recipe 1
228
229 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
230 while (<FH>) {
231 if (/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/) {
232 if ($7 ne '' && $9 ne '') {
233 printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%-3o.%o\n",$1,$2,$3,$4,$5,$6,$7,$8,$9);
234 }
235 elsif ($7 ne '') {
236 printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%o\n",$1,$2,$3,$4,$5,$6,$7,$8);
237 }
238 else {
239 printf("%s%-9o%-9o%-9o%-9o%-9o%o\n",$1,$2,$3,$4,$5,$6,$8);
240 }
241 }
242 }
243
244 If you would rather see this table listing hexadecimal values then run
245 the table through:
246
247 recipe 2
248
249 perl -ne 'if(/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
250 -e '{printf("%s%-9X%-9X%-9X%X\n",$1,$2,$3,$4,$5)}' perlebcdic.pod
251
252 Or, in order to retain the UTF-x code points in hexadecimal:
253
254 recipe 3
255
256 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
257 while (<FH>) {
258 if (/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/) {
259 if ($7 ne '' && $9 ne '') {
260 printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%-2X.%X\n",$1,$2,$3,$4,$5,$6,$7,$8,$9);
261 }
262 elsif ($7 ne '') {
263 printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%X\n",$1,$2,$3,$4,$5,$6,$7,$8);
264 }
265 else {
266 printf("%s%-9X%-9X%-9X%-9X%-9X%X\n",$1,$2,$3,$4,$5,$6,$8);
267 }
268 }
269 }
270
271
272 incomp- incomp-
273 8859-1 lete lete
274 chr 0819 0037 1047 POSIX-BC UTF-8 UTF-EBCDIC
275 ------------------------------------------------------------------------------------
276 <NULL> 0 0 0 0 0 0
277 <START OF HEADING> 1 1 1 1 1 1
278 <START OF TEXT> 2 2 2 2 2 2
279 <END OF TEXT> 3 3 3 3 3 3
280 <END OF TRANSMISSION> 4 55 55 55 4 55
281 <ENQUIRY> 5 45 45 45 5 45
282 <ACKNOWLEDGE> 6 46 46 46 6 46
283 <BELL> 7 47 47 47 7 47
284 <BACKSPACE> 8 22 22 22 8 22
285 <HORIZONTAL TABULATION> 9 5 5 5 9 5
286 <LINE FEED> 10 37 21 21 10 21 ***
287 <VERTICAL TABULATION> 11 11 11 11 11 11
288 <FORM FEED> 12 12 12 12 12 12
289 <CARRIAGE RETURN> 13 13 13 13 13 13
290 <SHIFT OUT> 14 14 14 14 14 14
291 <SHIFT IN> 15 15 15 15 15 15
292 <DATA LINK ESCAPE> 16 16 16 16 16 16
293 <DEVICE CONTROL ONE> 17 17 17 17 17 17
294 <DEVICE CONTROL TWO> 18 18 18 18 18 18
295 <DEVICE CONTROL THREE> 19 19 19 19 19 19
296 <DEVICE CONTROL FOUR> 20 60 60 60 20 60
297 <NEGATIVE ACKNOWLEDGE> 21 61 61 61 21 61
298 <SYNCHRONOUS IDLE> 22 50 50 50 22 50
299 <END OF TRANSMISSION BLOCK> 23 38 38 38 23 38
300 <CANCEL> 24 24 24 24 24 24
301 <END OF MEDIUM> 25 25 25 25 25 25
302 <SUBSTITUTE> 26 63 63 63 26 63
303 <ESCAPE> 27 39 39 39 27 39
304 <FILE SEPARATOR> 28 28 28 28 28 28
305 <GROUP SEPARATOR> 29 29 29 29 29 29
306 <RECORD SEPARATOR> 30 30 30 30 30 30
307 <UNIT SEPARATOR> 31 31 31 31 31 31
308 <SPACE> 32 64 64 64 32 64
309 ! 33 90 90 90 33 90
310 " 34 127 127 127 34 127
311 # 35 123 123 123 35 123
312 $ 36 91 91 91 36 91
313 % 37 108 108 108 37 108
314 & 38 80 80 80 38 80
315 ' 39 125 125 125 39 125
316 ( 40 77 77 77 40 77
317 ) 41 93 93 93 41 93
318 * 42 92 92 92 42 92
319 + 43 78 78 78 43 78
320 , 44 107 107 107 44 107
321 - 45 96 96 96 45 96
322 . 46 75 75 75 46 75
323 / 47 97 97 97 47 97
324 0 48 240 240 240 48 240
325 1 49 241 241 241 49 241
326 2 50 242 242 242 50 242
327 3 51 243 243 243 51 243
328 4 52 244 244 244 52 244
329 5 53 245 245 245 53 245
330 6 54 246 246 246 54 246
331 7 55 247 247 247 55 247
332 8 56 248 248 248 56 248
333 9 57 249 249 249 57 249
334 : 58 122 122 122 58 122
335 ; 59 94 94 94 59 94
336 < 60 76 76 76 60 76
337 = 61 126 126 126 61 126
338 > 62 110 110 110 62 110
339 ? 63 111 111 111 63 111
340 @ 64 124 124 124 64 124
341 A 65 193 193 193 65 193
342 B 66 194 194 194 66 194
343 C 67 195 195 195 67 195
344 D 68 196 196 196 68 196
345 E 69 197 197 197 69 197
346 F 70 198 198 198 70 198
347 G 71 199 199 199 71 199
348 H 72 200 200 200 72 200
349 I 73 201 201 201 73 201
350 J 74 209 209 209 74 209
351 K 75 210 210 210 75 210
352 L 76 211 211 211 76 211
353 M 77 212 212 212 77 212
354 N 78 213 213 213 78 213
355 O 79 214 214 214 79 214
356 P 80 215 215 215 80 215
357 Q 81 216 216 216 81 216
358 R 82 217 217 217 82 217
359 S 83 226 226 226 83 226
360 T 84 227 227 227 84 227
361 U 85 228 228 228 85 228
362 V 86 229 229 229 86 229
363 W 87 230 230 230 87 230
364 X 88 231 231 231 88 231
365 Y 89 232 232 232 89 232
366 Z 90 233 233 233 90 233
367 [ 91 186 173 187 91 173 *** ###
368 \ 92 224 224 188 92 224 ###
369 ] 93 187 189 189 93 189 ***
370 ^ 94 176 95 106 94 95 *** ###
371 _ 95 109 109 109 95 109
372 ` 96 121 121 74 96 121 ###
373 a 97 129 129 129 97 129
374 b 98 130 130 130 98 130
375 c 99 131 131 131 99 131
376 d 100 132 132 132 100 132
377 e 101 133 133 133 101 133
378 f 102 134 134 134 102 134
379 g 103 135 135 135 103 135
380 h 104 136 136 136 104 136
381 i 105 137 137 137 105 137
382 j 106 145 145 145 106 145
383 k 107 146 146 146 107 146
384 l 108 147 147 147 108 147
385 m 109 148 148 148 109 148
386 n 110 149 149 149 110 149
387 o 111 150 150 150 111 150
388 p 112 151 151 151 112 151
389 q 113 152 152 152 113 152
390 r 114 153 153 153 114 153
391 s 115 162 162 162 115 162
392 t 116 163 163 163 116 163
393 u 117 164 164 164 117 164
394 v 118 165 165 165 118 165
395 w 119 166 166 166 119 166
396 x 120 167 167 167 120 167
397 y 121 168 168 168 121 168
398 z 122 169 169 169 122 169
399 { 123 192 192 251 123 192 ###
400 | 124 79 79 79 124 79
401 } 125 208 208 253 125 208 ###
402 ~ 126 161 161 255 126 161 ###
403 <DELETE> 127 7 7 7 127 7
404 <C1 0> 128 32 32 32 194.128 32
405 <C1 1> 129 33 33 33 194.129 33
406 <C1 2> 130 34 34 34 194.130 34
407 <C1 3> 131 35 35 35 194.131 35
408 <C1 4> 132 36 36 36 194.132 36
409 <C1 5> 133 21 37 37 194.133 37 ***
410 <C1 6> 134 6 6 6 194.134 6
411 <C1 7> 135 23 23 23 194.135 23
412 <C1 8> 136 40 40 40 194.136 40
413 <C1 9> 137 41 41 41 194.137 41
414 <C1 10> 138 42 42 42 194.138 42
415 <C1 11> 139 43 43 43 194.139 43
416 <C1 12> 140 44 44 44 194.140 44
417 <C1 13> 141 9 9 9 194.141 9
418 <C1 14> 142 10 10 10 194.142 10
419 <C1 15> 143 27 27 27 194.143 27
420 <C1 16> 144 48 48 48 194.144 48
421 <C1 17> 145 49 49 49 194.145 49
422 <C1 18> 146 26 26 26 194.146 26
423 <C1 19> 147 51 51 51 194.147 51
424 <C1 20> 148 52 52 52 194.148 52
425 <C1 21> 149 53 53 53 194.149 53
426 <C1 22> 150 54 54 54 194.150 54
427 <C1 23> 151 8 8 8 194.151 8
428 <C1 24> 152 56 56 56 194.152 56
429 <C1 25> 153 57 57 57 194.153 57
430 <C1 26> 154 58 58 58 194.154 58
431 <C1 27> 155 59 59 59 194.155 59
432 <C1 28> 156 4 4 4 194.156 4
433 <C1 29> 157 20 20 20 194.157 20
434 <C1 30> 158 62 62 62 194.158 62
435 <C1 31> 159 255 255 95 194.159 255 ###
436 <NON-BREAKING SPACE> 160 65 65 65 194.160 128.65
437 <INVERTED EXCLAMATION MARK> 161 170 170 170 194.161 128.66
438 <CENT SIGN> 162 74 74 176 194.162 128.67 ###
439 <POUND SIGN> 163 177 177 177 194.163 128.68
440 <CURRENCY SIGN> 164 159 159 159 194.164 128.69
441 <YEN SIGN> 165 178 178 178 194.165 128.70
442 <BROKEN BAR> 166 106 106 208 194.166 128.71 ###
443 <SECTION SIGN> 167 181 181 181 194.167 128.72
444 <DIAERESIS> 168 189 187 121 194.168 128.73 *** ###
445 <COPYRIGHT SIGN> 169 180 180 180 194.169 128.74
446 <FEMININE ORDINAL INDICATOR> 170 154 154 154 194.170 128.81
447 <LEFT POINTING GUILLEMET> 171 138 138 138 194.171 128.82
448 <NOT SIGN> 172 95 176 186 194.172 128.83 *** ###
449 <SOFT HYPHEN> 173 202 202 202 194.173 128.84
450 <REGISTERED TRADE MARK SIGN> 174 175 175 175 194.174 128.85
451 <MACRON> 175 188 188 161 194.175 128.86 ###
452 <DEGREE SIGN> 176 144 144 144 194.176 128.87
453 <PLUS-OR-MINUS SIGN> 177 143 143 143 194.177 128.88
454 <SUPERSCRIPT TWO> 178 234 234 234 194.178 128.89
455 <SUPERSCRIPT THREE> 179 250 250 250 194.179 128.98
456 <ACUTE ACCENT> 180 190 190 190 194.180 128.99
457 <MICRO SIGN> 181 160 160 160 194.181 128.100
458 <PARAGRAPH SIGN> 182 182 182 182 194.182 128.101
459 <MIDDLE DOT> 183 179 179 179 194.183 128.102
460 <CEDILLA> 184 157 157 157 194.184 128.103
461 <SUPERSCRIPT ONE> 185 218 218 218 194.185 128.104
462 <MASC. ORDINAL INDICATOR> 186 155 155 155 194.186 128.105
463 <RIGHT POINTING GUILLEMET> 187 139 139 139 194.187 128.106
464 <FRACTION ONE QUARTER> 188 183 183 183 194.188 128.112
465 <FRACTION ONE HALF> 189 184 184 184 194.189 128.113
466 <FRACTION THREE QUARTERS> 190 185 185 185 194.190 128.114
467 <INVERTED QUESTION MARK> 191 171 171 171 194.191 128.115
468 <A WITH GRAVE> 192 100 100 100 195.128 138.65
469 <A WITH ACUTE> 193 101 101 101 195.129 138.66
470 <A WITH CIRCUMFLEX> 194 98 98 98 195.130 138.67
471 <A WITH TILDE> 195 102 102 102 195.131 138.68
472 <A WITH DIAERESIS> 196 99 99 99 195.132 138.69
473 <A WITH RING ABOVE> 197 103 103 103 195.133 138.70
474 <CAPITAL LIGATURE AE> 198 158 158 158 195.134 138.71
475 <C WITH CEDILLA> 199 104 104 104 195.135 138.72
476 <E WITH GRAVE> 200 116 116 116 195.136 138.73
477 <E WITH ACUTE> 201 113 113 113 195.137 138.74
478 <E WITH CIRCUMFLEX> 202 114 114 114 195.138 138.81
479 <E WITH DIAERESIS> 203 115 115 115 195.139 138.82
480 <I WITH GRAVE> 204 120 120 120 195.140 138.83
481 <I WITH ACUTE> 205 117 117 117 195.141 138.84
482 <I WITH CIRCUMFLEX> 206 118 118 118 195.142 138.85
483 <I WITH DIAERESIS> 207 119 119 119 195.143 138.86
484 <CAPITAL LETTER ETH> 208 172 172 172 195.144 138.87
485 <N WITH TILDE> 209 105 105 105 195.145 138.88
486 <O WITH GRAVE> 210 237 237 237 195.146 138.89
487 <O WITH ACUTE> 211 238 238 238 195.147 138.98
488 <O WITH CIRCUMFLEX> 212 235 235 235 195.148 138.99
489 <O WITH TILDE> 213 239 239 239 195.149 138.100
490 <O WITH DIAERESIS> 214 236 236 236 195.150 138.101
491 <MULTIPLICATION SIGN> 215 191 191 191 195.151 138.102
492 <O WITH STROKE> 216 128 128 128 195.152 138.103
493 <U WITH GRAVE> 217 253 253 224 195.153 138.104 ###
494 <U WITH ACUTE> 218 254 254 254 195.154 138.105
495 <U WITH CIRCUMFLEX> 219 251 251 221 195.155 138.106 ###
496 <U WITH DIAERESIS> 220 252 252 252 195.156 138.112
497 <Y WITH ACUTE> 221 173 186 173 195.157 138.113 *** ###
498 <CAPITAL LETTER THORN> 222 174 174 174 195.158 138.114
499 <SMALL LETTER SHARP S> 223 89 89 89 195.159 138.115
500 <a WITH GRAVE> 224 68 68 68 195.160 139.65
501 <a WITH ACUTE> 225 69 69 69 195.161 139.66
502 <a WITH CIRCUMFLEX> 226 66 66 66 195.162 139.67
503 <a WITH TILDE> 227 70 70 70 195.163 139.68
504 <a WITH DIAERESIS> 228 67 67 67 195.164 139.69
505 <a WITH RING ABOVE> 229 71 71 71 195.165 139.70
506 <SMALL LIGATURE ae> 230 156 156 156 195.166 139.71
507 <c WITH CEDILLA> 231 72 72 72 195.167 139.72
508 <e WITH GRAVE> 232 84 84 84 195.168 139.73
509 <e WITH ACUTE> 233 81 81 81 195.169 139.74
510 <e WITH CIRCUMFLEX> 234 82 82 82 195.170 139.81
511 <e WITH DIAERESIS> 235 83 83 83 195.171 139.82
512 <i WITH GRAVE> 236 88 88 88 195.172 139.83
513 <i WITH ACUTE> 237 85 85 85 195.173 139.84
514 <i WITH CIRCUMFLEX> 238 86 86 86 195.174 139.85
515 <i WITH DIAERESIS> 239 87 87 87 195.175 139.86
516 <SMALL LETTER eth> 240 140 140 140 195.176 139.87
517 <n WITH TILDE> 241 73 73 73 195.177 139.88
518 <o WITH GRAVE> 242 205 205 205 195.178 139.89
519 <o WITH ACUTE> 243 206 206 206 195.179 139.98
520 <o WITH CIRCUMFLEX> 244 203 203 203 195.180 139.99
521 <o WITH TILDE> 245 207 207 207 195.181 139.100
522 <o WITH DIAERESIS> 246 204 204 204 195.182 139.101
523 <DIVISION SIGN> 247 225 225 225 195.183 139.102
524 <o WITH STROKE> 248 112 112 112 195.184 139.103
525 <u WITH GRAVE> 249 221 221 192 195.185 139.104 ###
526 <u WITH ACUTE> 250 222 222 222 195.186 139.105
527 <u WITH CIRCUMFLEX> 251 219 219 219 195.187 139.106
528 <u WITH DIAERESIS> 252 220 220 220 195.188 139.112
529 <y WITH ACUTE> 253 141 141 141 195.189 139.113
530 <SMALL LETTER thorn> 254 142 142 142 195.190 139.114
531 <y WITH DIAERESIS> 255 223 223 223 195.191 139.115
532
533 If you would rather see the above table in CCSID 0037 order rather than
534 ASCII + Latin-1 order then run the table through:
535
536 recipe 4
537
538 perl -ne 'if(/.{33}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
539 -e '{push(@l,$_)}' \
540 -e 'END{print map{$_->[0]}' \
541 -e ' sort{$a->[1] <=> $b->[1]}' \
542 -e ' map{[$_,substr($_,42,3)]}@l;}' perlebcdic.pod
543
544 If you would rather see it in CCSID 1047 order then change the digit 42
545 in the last line to 51, like this:
546
547 recipe 5
548
549 perl -ne 'if(/.{33}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
550 -e '{push(@l,$_)}' \
551 -e 'END{print map{$_->[0]}' \
552 -e ' sort{$a->[1] <=> $b->[1]}' \
553 -e ' map{[$_,substr($_,51,3)]}@l;}' perlebcdic.pod
554
555 If you would rather see it in POSIX-BC order then change the digit 51
556 in the last line to 60, like this:
557
558 recipe 6
559
560 perl -ne 'if(/.{33}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
561 -e '{push(@l,$_)}' \
562 -e 'END{print map{$_->[0]}' \
563 -e ' sort{$a->[1] <=> $b->[1]}' \
564 -e ' map{[$_,substr($_,60,3)]}@l;}' perlebcdic.pod
565
567 To determine the character set you are running under from perl one
568 could use the return value of ord() or chr() to test one or more
569 character values. For example:
570
571 $is_ascii = "A" eq chr(65);
572 $is_ebcdic = "A" eq chr(193);
573
574 Also, "\t" is a "HORIZONTAL TABULATION" character so that:
575
576 $is_ascii = ord("\t") == 9;
577 $is_ebcdic = ord("\t") == 5;
578
579 To distinguish EBCDIC code pages try looking at one or more of the
580 characters that differ between them. For example:
581
582 $is_ebcdic_37 = "\n" eq chr(37);
583 $is_ebcdic_1047 = "\n" eq chr(21);
584
585 Or better still choose a character that is uniquely encoded in any of
586 the code sets, e.g.:
587
588 $is_ascii = ord('[') == 91;
589 $is_ebcdic_37 = ord('[') == 186;
590 $is_ebcdic_1047 = ord('[') == 173;
591 $is_ebcdic_POSIX_BC = ord('[') == 187;
592
593 However, it would be unwise to write tests such as:
594
595 $is_ascii = "\r" ne chr(13); # WRONG
596 $is_ascii = "\n" ne chr(10); # ILL ADVISED
597
598 Obviously the first of these will fail to distinguish most ASCII
599 platforms from either a CCSID 0037, a 1047, or a POSIX-BC EBCDIC
600 platform since "\r" eq chr(13) under all of those coded character sets.
601 But note too that because "\n" is chr(13) and "\r" is chr(10) on the
602 MacIntosh (which is an ASCII platform) the second $is_ascii test will
603 lead to trouble there.
604
605 To determine whether or not perl was built under an EBCDIC code page
606 you can use the Config module like so:
607
608 use Config;
609 $is_ebcdic = $Config{'ebcdic'} eq 'define';
610
612 tr///
613 In order to convert a string of characters from one character set to
614 another a simple list of numbers, such as in the right columns in the
615 above table, along with perl's tr/// operator is all that is needed.
616 The data in the table are in ASCII order hence the EBCDIC columns
617 provide easy to use ASCII to EBCDIC operations that are also easily
618 reversed.
619
620 For example, to convert ASCII to code page 037 take the output of the
621 second column from the output of recipe 0 (modified to add \\
622 characters) and use it in tr/// like so:
623
624 $cp_037 =
625 '\000\001\002\003\234\011\206\177\227\215\216\013\014\015\016\017' .
626 '\020\021\022\023\235\205\010\207\030\031\222\217\034\035\036\037' .
627 '\200\201\202\203\204\012\027\033\210\211\212\213\214\005\006\007' .
628 '\220\221\026\223\224\225\226\004\230\231\232\233\024\025\236\032' .
629 '\040\240\342\344\340\341\343\345\347\361\242\056\074\050\053\174' .
630 '\046\351\352\353\350\355\356\357\354\337\041\044\052\051\073\254' .
631 '\055\057\302\304\300\301\303\305\307\321\246\054\045\137\076\077' .
632 '\370\311\312\313\310\315\316\317\314\140\072\043\100\047\075\042' .
633 '\330\141\142\143\144\145\146\147\150\151\253\273\360\375\376\261' .
634 '\260\152\153\154\155\156\157\160\161\162\252\272\346\270\306\244' .
635 '\265\176\163\164\165\166\167\170\171\172\241\277\320\335\336\256' .
636 '\136\243\245\267\251\247\266\274\275\276\133\135\257\250\264\327' .
637 '\173\101\102\103\104\105\106\107\110\111\255\364\366\362\363\365' .
638 '\175\112\113\114\115\116\117\120\121\122\271\373\374\371\372\377' .
639 '\134\367\123\124\125\126\127\130\131\132\262\324\326\322\323\325' .
640 '\060\061\062\063\064\065\066\067\070\071\263\333\334\331\332\237' ;
641
642 my $ebcdic_string = $ascii_string;
643 eval '$ebcdic_string =~ tr/' . $cp_037 . '/\000-\377/';
644
645 To convert from EBCDIC 037 to ASCII just reverse the order of the tr///
646 arguments like so:
647
648 my $ascii_string = $ebcdic_string;
649 eval '$ascii_string =~ tr/\000-\377/' . $cp_037 . '/';
650
651 Similarly one could take the output of the third column from recipe 0
652 to obtain a $cp_1047 table. The fourth column of the output from
653 recipe 0 could provide a $cp_posix_bc table suitable for transcoding as
654 well.
655
656 iconv
657 XPG operability often implies the presence of an iconv utility
658 available from the shell or from the C library. Consult your system's
659 documentation for information on iconv.
660
661 On OS/390 or z/OS see the iconv(1) manpage. One way to invoke the
662 iconv shell utility from within perl would be to:
663
664 # OS/390 or z/OS example
665 $ascii_data = `echo '$ebcdic_data'| iconv -f IBM-1047 -t ISO8859-1`
666
667 or the inverse map:
668
669 # OS/390 or z/OS example
670 $ebcdic_data = `echo '$ascii_data'| iconv -f ISO8859-1 -t IBM-1047`
671
672 For other perl based conversion options see the Convert::* modules on
673 CPAN.
674
675 C RTL
676 The OS/390 and z/OS C run time libraries provide _atoe() and _etoa()
677 functions.
678
680 The ".." range operator treats certain character ranges with care on
681 EBCDIC platforms. For example the following array will have twenty six
682 elements on either an EBCDIC platform or an ASCII platform:
683
684 @alphabet = ('A'..'Z'); # $#alphabet == 25
685
686 The bitwise operators such as & ^ | may return different results when
687 operating on string or character data in a perl program running on an
688 EBCDIC platform than when run on an ASCII platform. Here is an example
689 adapted from the one in perlop:
690
691 # EBCDIC-based examples
692 print "j p \n" ^ " a h"; # prints "JAPH\n"
693 print "JA" | " ph\n"; # prints "japh\n"
694 print "JAPH\nJunk" & "\277\277\277\277\277"; # prints "japh\n";
695 print 'p N$' ^ " E<H\n"; # prints "Perl\n";
696
697 An interesting property of the 32 C0 control characters in the ASCII
698 table is that they can "literally" be constructed as control characters
699 in perl, e.g. "(chr(0) eq "\c@")" "(chr(1) eq "\cA")", and so on. Perl
700 on EBCDIC platforms has been ported to take "\c@" to chr(0) and "\cA"
701 to chr(1) as well, but the thirty three characters that result depend
702 on which code page you are using. The table below uses the character
703 names from the previous table but with substitutions such as s/START
704 OF/S.O./; s/END OF /E.O./; s/TRANSMISSION/TRANS./; s/TABULATION/TAB./;
705 s/VERTICAL/VERT./; s/HORIZONTAL/HORIZ./; s/DEVICE CONTROL/D.C./;
706 s/SEPARATOR/SEP./; s/NEGATIVE ACKNOWLEDGE/NEG. ACK./;. The POSIX-BC
707 and 1047 sets are identical throughout this range and differ from the
708 0037 set at only one spot (21 decimal). Note that the "LINE FEED"
709 character may be generated by "\cJ" on ASCII platforms but by "\cU" on
710 1047 or POSIX-BC platforms and cannot be generated as a "\c.letter."
711 control character on 0037 platforms. Note also that "\c\\" maps to two
712 characters not one.
713
714 chr ord 8859-1 0037 1047 && POSIX-BC
715 ------------------------------------------------------------------------
716 "\c?" 127 <DELETE> " " ***><
717 "\c@" 0 <NULL> <NULL> <NULL> ***><
718 "\cA" 1 <S.O. HEADING> <S.O. HEADING> <S.O. HEADING>
719 "\cB" 2 <S.O. TEXT> <S.O. TEXT> <S.O. TEXT>
720 "\cC" 3 <E.O. TEXT> <E.O. TEXT> <E.O. TEXT>
721 "\cD" 4 <E.O. TRANS.> <C1 28> <C1 28>
722 "\cE" 5 <ENQUIRY> <HORIZ. TAB.> <HORIZ. TAB.>
723 "\cF" 6 <ACKNOWLEDGE> <C1 6> <C1 6>
724 "\cG" 7 <BELL> <DELETE> <DELETE>
725 "\cH" 8 <BACKSPACE> <C1 23> <C1 23>
726 "\cI" 9 <HORIZ. TAB.> <C1 13> <C1 13>
727 "\cJ" 10 <LINE FEED> <C1 14> <C1 14>
728 "\cK" 11 <VERT. TAB.> <VERT. TAB.> <VERT. TAB.>
729 "\cL" 12 <FORM FEED> <FORM FEED> <FORM FEED>
730 "\cM" 13 <CARRIAGE RETURN> <CARRIAGE RETURN> <CARRIAGE RETURN>
731 "\cN" 14 <SHIFT OUT> <SHIFT OUT> <SHIFT OUT>
732 "\cO" 15 <SHIFT IN> <SHIFT IN> <SHIFT IN>
733 "\cP" 16 <DATA LINK ESCAPE> <DATA LINK ESCAPE> <DATA LINK ESCAPE>
734 "\cQ" 17 <D.C. ONE> <D.C. ONE> <D.C. ONE>
735 "\cR" 18 <D.C. TWO> <D.C. TWO> <D.C. TWO>
736 "\cS" 19 <D.C. THREE> <D.C. THREE> <D.C. THREE>
737 "\cT" 20 <D.C. FOUR> <C1 29> <C1 29>
738 "\cU" 21 <NEG. ACK.> <C1 5> <LINE FEED> ***
739 "\cV" 22 <SYNCHRONOUS IDLE> <BACKSPACE> <BACKSPACE>
740 "\cW" 23 <E.O. TRANS. BLOCK> <C1 7> <C1 7>
741 "\cX" 24 <CANCEL> <CANCEL> <CANCEL>
742 "\cY" 25 <E.O. MEDIUM> <E.O. MEDIUM> <E.O. MEDIUM>
743 "\cZ" 26 <SUBSTITUTE> <C1 18> <C1 18>
744 "\c[" 27 <ESCAPE> <C1 15> <C1 15>
745 "\c\\" 28 <FILE SEP.>\ <FILE SEP.>\ <FILE SEP.>\
746 "\c]" 29 <GROUP SEP.> <GROUP SEP.> <GROUP SEP.>
747 "\c^" 30 <RECORD SEP.> <RECORD SEP.> <RECORD SEP.> ***><
748 "\c_" 31 <UNIT SEP.> <UNIT SEP.> <UNIT SEP.> ***><
749
751 chr() chr() must be given an EBCDIC code number argument to yield a
752 desired character return value on an EBCDIC platform. For
753 example:
754
755 $CAPITAL_LETTER_A = chr(193);
756
757 ord() ord() will return EBCDIC code number values on an EBCDIC
758 platform. For example:
759
760 $the_number_193 = ord("A");
761
762 pack() The c and C templates for pack() are dependent upon character
763 set encoding. Examples of usage on EBCDIC include:
764
765 $foo = pack("CCCC",193,194,195,196);
766 # $foo eq "ABCD"
767 $foo = pack("C4",193,194,195,196);
768 # same thing
769
770 $foo = pack("ccxxcc",193,194,195,196);
771 # $foo eq "AB\0\0CD"
772
773 print() One must be careful with scalars and strings that are passed to
774 print that contain ASCII encodings. One common place for this
775 to occur is in the output of the MIME type header for CGI
776 script writing. For example, many perl programming guides
777 recommend something similar to:
778
779 print "Content-type:\ttext/html\015\012\015\012";
780 # this may be wrong on EBCDIC
781
782 Under the IBM OS/390 USS Web Server or WebSphere on z/OS for
783 example you should instead write that as:
784
785 print "Content-type:\ttext/html\r\n\r\n"; # OK for DGW et alia
786
787 That is because the translation from EBCDIC to ASCII is done by
788 the web server in this case (such code will not be appropriate
789 for the Macintosh however). Consult your web server's
790 documentation for further details.
791
792 printf()
793 The formats that can convert characters to numbers and vice
794 versa will be different from their ASCII counterparts when
795 executed on an EBCDIC platform. Examples include:
796
797 printf("%c%c%c",193,194,195); # prints ABC
798
799 sort() EBCDIC sort results may differ from ASCII sort results
800 especially for mixed case strings. This is discussed in more
801 detail below.
802
803 sprintf()
804 See the discussion of printf() above. An example of the use of
805 sprintf would be:
806
807 $CAPITAL_LETTER_A = sprintf("%c",193);
808
809 unpack()
810 See the discussion of pack() above.
811
813 As of perl 5.005_03 the letter range regular expression such as [A-Z]
814 and [a-z] have been especially coded to not pick up gap characters.
815 For example, characters such as o "o WITH CIRCUMFLEX" that lie between
816 I and J would not be matched by the regular expression range "/[H-K]/".
817 This works in the other direction, too, if either of the range end
818 points is explicitly numeric: "[\x89-\x91]" will match "\x8e", even
819 though "\x89" is "i" and "\x91 " is "j", and "\x8e" is a gap character
820 from the alphabetic viewpoint.
821
822 If you do want to match the alphabet gap characters in a single octet
823 regular expression try matching the hex or octal code such as "/\313/"
824 on EBCDIC or "/\364/" on ASCII platforms to have your regular
825 expression match "o WITH CIRCUMFLEX".
826
827 Another construct to be wary of is the inappropriate use of hex or
828 octal constants in regular expressions. Consider the following set of
829 subs:
830
831 sub is_c0 {
832 my $char = substr(shift,0,1);
833 $char =~ /[\000-\037]/;
834 }
835
836 sub is_print_ascii {
837 my $char = substr(shift,0,1);
838 $char =~ /[\040-\176]/;
839 }
840
841 sub is_delete {
842 my $char = substr(shift,0,1);
843 $char eq "\177";
844 }
845
846 sub is_c1 {
847 my $char = substr(shift,0,1);
848 $char =~ /[\200-\237]/;
849 }
850
851 sub is_latin_1 {
852 my $char = substr(shift,0,1);
853 $char =~ /[\240-\377]/;
854 }
855
856 The above would be adequate if the concern was only with numeric code
857 points. However, the concern may be with characters rather than code
858 points and on an EBCDIC platform it may be desirable for constructs
859 such as "if (is_print_ascii("A")) {print "A is a printable
860 character\n";}" to print out the expected message. One way to
861 represent the above collection of character classification subs that is
862 capable of working across the four coded character sets discussed in
863 this document is as follows:
864
865 sub Is_c0 {
866 my $char = substr(shift,0,1);
867 if (ord('^')==94) { # ascii
868 return $char =~ /[\000-\037]/;
869 }
870 if (ord('^')==176) { # 37
871 return $char =~ /[\000-\003\067\055-\057\026\005\045\013-\023\074\075\062\046\030\031\077\047\034-\037]/;
872 }
873 if (ord('^')==95 || ord('^')==106) { # 1047 || posix-bc
874 return $char =~ /[\000-\003\067\055-\057\026\005\025\013-\023\074\075\062\046\030\031\077\047\034-\037]/;
875 }
876 }
877
878 sub Is_print_ascii {
879 my $char = substr(shift,0,1);
880 $char =~ /[ !"\#\$%&'()*+,\-.\/0-9:;<=>?\@A-Z[\\\]^_`a-z{|}~]/;
881 }
882
883 sub Is_delete {
884 my $char = substr(shift,0,1);
885 if (ord('^')==94) { # ascii
886 return $char eq "\177";
887 }
888 else { # ebcdic
889 return $char eq "\007";
890 }
891 }
892
893 sub Is_c1 {
894 my $char = substr(shift,0,1);
895 if (ord('^')==94) { # ascii
896 return $char =~ /[\200-\237]/;
897 }
898 if (ord('^')==176) { # 37
899 return $char =~ /[\040-\044\025\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\377]/;
900 }
901 if (ord('^')==95) { # 1047
902 return $char =~ /[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\377]/;
903 }
904 if (ord('^')==106) { # posix-bc
905 return $char =~
906 /[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\137]/;
907 }
908 }
909
910 sub Is_latin_1 {
911 my $char = substr(shift,0,1);
912 if (ord('^')==94) { # ascii
913 return $char =~ /[\240-\377]/;
914 }
915 if (ord('^')==176) { # 37
916 return $char =~
917 /[\101\252\112\261\237\262\152\265\275\264\232\212\137\312\257\274\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\375\376\373\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]/;
918 }
919 if (ord('^')==95) { # 1047
920 return $char =~
921 /[\101\252\112\261\237\262\152\265\273\264\232\212\260\312\257\274\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\375\376\373\374\272\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]/;
922 }
923 if (ord('^')==106) { # posix-bc
924 return $char =~
925 /[\101\252\260\261\237\262\320\265\171\264\232\212\272\312\257\241\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\340\376\335\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\300\336\333\334\215\216\337]/;
926 }
927 }
928
929 Note however that only the "Is_ascii_print()" sub is really independent
930 of coded character set. Another way to write "Is_latin_1()" would be
931 to use the characters in the range explicitly:
932
933 sub Is_latin_1 {
934 my $char = substr(shift,0,1);
935 $char =~ /[A AXAXAXAXAXAXAXAXAXAXAXAXAAXAXAXAXAXAXAXAXAXAXAXAXAXAXAXAXAXAXA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~ A~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~A~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~X]/;
936 }
937
938 Although that form may run into trouble in network transit (due to the
939 presence of 8 bit characters) or on non ISO-Latin character sets.
940
942 Most socket programming assumes ASCII character encodings in network
943 byte order. Exceptions can include CGI script writing under a host web
944 server where the server may take care of translation for you. Most
945 host web servers convert EBCDIC data to ISO-8859-1 or Unicode on
946 output.
947
949 One big difference between ASCII based character sets and EBCDIC ones
950 are the relative positions of upper and lower case letters and the
951 letters compared to the digits. If sorted on an ASCII based platform
952 the two letter abbreviation for a physician comes before the two letter
953 for drive, that is:
954
955 @sorted = sort(qw(Dr. dr.)); # @sorted holds ('Dr.','dr.') on ASCII,
956 # but ('dr.','Dr.') on EBCDIC
957
958 The property of lower case before uppercase letters in EBCDIC is even
959 carried to the Latin 1 EBCDIC pages such as 0037 and 1047. An example
960 would be that Ee "E WITH DIAERESIS" (203) comes before ee "e WITH
961 DIAERESIS" (235) on an ASCII platform, but the latter (83) comes before
962 the former (115) on an EBCDIC platform. (Astute readers will note that
963 the upper case version of ss "SMALL LETTER SHARP S" is simply "SS" and
964 that the upper case version of ye "y WITH DIAERESIS" is not in the
965 0..255 range but it is at U+x0178 in Unicode, or "\x{178}" in a Unicode
966 enabled Perl).
967
968 The sort order will cause differences between results obtained on ASCII
969 platforms versus EBCDIC platforms. What follows are some suggestions
970 on how to deal with these differences.
971
972 Ignore ASCII vs. EBCDIC sort differences.
973 This is the least computationally expensive strategy. It may require
974 some user education.
975
976 MONO CASE then sort data.
977 In order to minimize the expense of mono casing mixed test try to
978 "tr///" towards the character set case most employed within the data.
979 If the data are primarily UPPERCASE non Latin 1 then apply
980 tr/[a-z]/[A-Z]/ then sort(). If the data are primarily lowercase non
981 Latin 1 then apply tr/[A-Z]/[a-z]/ before sorting. If the data are
982 primarily UPPERCASE and include Latin-1 characters then apply:
983
984 tr/[a-z]/[A-Z]/;
985 tr/[A~ A~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~A~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~X]/[A~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~X]/;
986 s/A~X/SS/g;
987
988 then sort(). Do note however that such Latin-1 manipulation does not
989 address the ye "y WITH DIAERESIS" character that will remain at code
990 point 255 on ASCII platforms, but 223 on most EBCDIC platforms where it
991 will sort to a place less than the EBCDIC numerals. With a Unicode
992 enabled Perl you might try:
993
994 tr/^?/\x{178}/;
995
996 The strategy of mono casing data before sorting does not preserve the
997 case of the data and may not be acceptable for that reason.
998
999 Convert, sort data, then re convert.
1000 This is the most expensive proposition that does not employ a network
1001 connection.
1002
1003 Perform sorting on one type of platform only.
1004 This strategy can employ a network connection. As such it would be
1005 computationally expensive.
1006
1008 There are a variety of ways of transforming data with an intra
1009 character set mapping that serve a variety of purposes. Sorting was
1010 discussed in the previous section and a few of the other more popular
1011 mapping techniques are discussed next.
1012
1013 URL decoding and encoding
1014 Note that some URLs have hexadecimal ASCII code points in them in an
1015 attempt to overcome character or protocol limitation issues. For
1016 example the tilde character is not on every keyboard hence a URL of the
1017 form:
1018
1019 http://www.pvhp.com/~pvhp/
1020
1021 may also be expressed as either of:
1022
1023 http://www.pvhp.com/%7Epvhp/
1024
1025 http://www.pvhp.com/%7epvhp/
1026
1027 where 7E is the hexadecimal ASCII code point for '~'. Here is an
1028 example of decoding such a URL under CCSID 1047:
1029
1030 $url = 'http://www.pvhp.com/%7Epvhp/';
1031 # this array assumes code page 1047
1032 my @a2e_1047 = (
1033 0, 1, 2, 3, 55, 45, 46, 47, 22, 5, 21, 11, 12, 13, 14, 15,
1034 16, 17, 18, 19, 60, 61, 50, 38, 24, 25, 63, 39, 28, 29, 30, 31,
1035 64, 90,127,123, 91,108, 80,125, 77, 93, 92, 78,107, 96, 75, 97,
1036 240,241,242,243,244,245,246,247,248,249,122, 94, 76,126,110,111,
1037 124,193,194,195,196,197,198,199,200,201,209,210,211,212,213,214,
1038 215,216,217,226,227,228,229,230,231,232,233,173,224,189, 95,109,
1039 121,129,130,131,132,133,134,135,136,137,145,146,147,148,149,150,
1040 151,152,153,162,163,164,165,166,167,168,169,192, 79,208,161, 7,
1041 32, 33, 34, 35, 36, 37, 6, 23, 40, 41, 42, 43, 44, 9, 10, 27,
1042 48, 49, 26, 51, 52, 53, 54, 8, 56, 57, 58, 59, 4, 20, 62,255,
1043 65,170, 74,177,159,178,106,181,187,180,154,138,176,202,175,188,
1044 144,143,234,250,190,160,182,179,157,218,155,139,183,184,185,171,
1045 100,101, 98,102, 99,103,158,104,116,113,114,115,120,117,118,119,
1046 172,105,237,238,235,239,236,191,128,253,254,251,252,186,174, 89,
1047 68, 69, 66, 70, 67, 71,156, 72, 84, 81, 82, 83, 88, 85, 86, 87,
1048 140, 73,205,206,203,207,204,225,112,221,222,219,220,141,142,223
1049 );
1050 $url =~ s/%([0-9a-fA-F]{2})/pack("c",$a2e_1047[hex($1)])/ge;
1051
1052 Conversely, here is a partial solution for the task of encoding such a
1053 URL under the 1047 code page:
1054
1055 $url = 'http://www.pvhp.com/~pvhp/';
1056 # this array assumes code page 1047
1057 my @e2a_1047 = (
1058 0, 1, 2, 3,156, 9,134,127,151,141,142, 11, 12, 13, 14, 15,
1059 16, 17, 18, 19,157, 10, 8,135, 24, 25,146,143, 28, 29, 30, 31,
1060 128,129,130,131,132,133, 23, 27,136,137,138,139,140, 5, 6, 7,
1061 144,145, 22,147,148,149,150, 4,152,153,154,155, 20, 21,158, 26,
1062 32,160,226,228,224,225,227,229,231,241,162, 46, 60, 40, 43,124,
1063 38,233,234,235,232,237,238,239,236,223, 33, 36, 42, 41, 59, 94,
1064 45, 47,194,196,192,193,195,197,199,209,166, 44, 37, 95, 62, 63,
1065 248,201,202,203,200,205,206,207,204, 96, 58, 35, 64, 39, 61, 34,
1066 216, 97, 98, 99,100,101,102,103,104,105,171,187,240,253,254,177,
1067 176,106,107,108,109,110,111,112,113,114,170,186,230,184,198,164,
1068 181,126,115,116,117,118,119,120,121,122,161,191,208, 91,222,174,
1069 172,163,165,183,169,167,182,188,189,190,221,168,175, 93,180,215,
1070 123, 65, 66, 67, 68, 69, 70, 71, 72, 73,173,244,246,242,243,245,
1071 125, 74, 75, 76, 77, 78, 79, 80, 81, 82,185,251,252,249,250,255,
1072 92,247, 83, 84, 85, 86, 87, 88, 89, 90,178,212,214,210,211,213,
1073 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,179,219,220,217,218,159
1074 );
1075 # The following regular expression does not address the
1076 # mappings for: ('.' => '%2E', '/' => '%2F', ':' => '%3A')
1077 $url =~ s/([\t "#%&\(\),;<=>\?\@\[\\\]^`{|}~])/sprintf("%%%02X",$e2a_1047[ord($1)])/ge;
1078
1079 where a more complete solution would split the URL into components and
1080 apply a full s/// substitution only to the appropriate parts.
1081
1082 In the remaining examples a @e2a or @a2e array may be employed but the
1083 assignment will not be shown explicitly. For code page 1047 you could
1084 use the @a2e_1047 or @e2a_1047 arrays just shown.
1085
1086 uu encoding and decoding
1087 The "u" template to pack() or unpack() will render EBCDIC data in
1088 EBCDIC characters equivalent to their ASCII counterparts. For example,
1089 the following will print "Yes indeed\n" on either an ASCII or EBCDIC
1090 computer:
1091
1092 $all_byte_chrs = '';
1093 for (0..255) { $all_byte_chrs .= chr($_); }
1094 $uuencode_byte_chrs = pack('u', $all_byte_chrs);
1095 ($uu = <<'ENDOFHEREDOC') =~ s/^\s*//gm;
1096 M``$"`P0%!@<("0H+#`T.#Q`1$A,4%187&!D:&QP='A\@(2(C)"4F)R@I*BLL
1097 M+2XO,#$R,S0U-C<X.3H[/#T^/T!!0D-$149'2$E*2TQ-3D]045)35%565UA9
1098 M6EM<75Y?8&%B8V1E9F=H:6IK;&UN;W!Q<G-T=79W>'EZ>WQ]?G^`@8*#A(6&
1099 MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S
1100 MM+6VM[BYNKN\O;Z_P,'"P\3%QL?(R<K+S,W.S]#1TM/4U=;7V-G:V]S=WM_@
1101 ?X>+CY.7FY^CIZNOL[>[O\/'R\_3U]O?X^?K[_/W^_P``
1102 ENDOFHEREDOC
1103 if ($uuencode_byte_chrs eq $uu) {
1104 print "Yes ";
1105 }
1106 $uudecode_byte_chrs = unpack('u', $uuencode_byte_chrs);
1107 if ($uudecode_byte_chrs eq $all_byte_chrs) {
1108 print "indeed\n";
1109 }
1110
1111 Here is a very spartan uudecoder that will work on EBCDIC provided that
1112 the @e2a array is filled in appropriately:
1113
1114 #!/usr/local/bin/perl
1115 @e2a = ( # this must be filled in
1116 );
1117 $_ = <> until ($mode,$file) = /^begin\s*(\d*)\s*(\S*)/;
1118 open(OUT, "> $file") if $file ne "";
1119 while(<>) {
1120 last if /^end/;
1121 next if /[a-z]/;
1122 next unless int(((($e2a[ord()] - 32 ) & 077) + 2) / 3) ==
1123 int(length() / 4);
1124 print OUT unpack("u", $_);
1125 }
1126 close(OUT);
1127 chmod oct($mode), $file;
1128
1129 Quoted-Printable encoding and decoding
1130 On ASCII encoded platforms it is possible to strip characters outside
1131 of the printable set using:
1132
1133 # This QP encoder works on ASCII only
1134 $qp_string =~ s/([=\x00-\x1F\x80-\xFF])/sprintf("=%02X",ord($1))/ge;
1135
1136 Whereas a QP encoder that works on both ASCII and EBCDIC platforms
1137 would look somewhat like the following (where the EBCDIC branch @e2a
1138 array is omitted for brevity):
1139
1140 if (ord('A') == 65) { # ASCII
1141 $delete = "\x7F"; # ASCII
1142 @e2a = (0 .. 255) # ASCII to ASCII identity map
1143 }
1144 else { # EBCDIC
1145 $delete = "\x07"; # EBCDIC
1146 @e2a = # EBCDIC to ASCII map (as shown above)
1147 }
1148 $qp_string =~
1149 s/([^ !"\#\$%&'()*+,\-.\/0-9:;<>?\@A-Z[\\\]^_`a-z{|}~$delete])/sprintf("=%02X",$e2a[ord($1)])/ge;
1150
1151 (although in production code the substitutions might be done in the
1152 EBCDIC branch with the @e2a array and separately in the ASCII branch
1153 without the expense of the identity map).
1154
1155 Such QP strings can be decoded with:
1156
1157 # This QP decoder is limited to ASCII only
1158 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/ge;
1159 $string =~ s/=[\n\r]+$//;
1160
1161 Whereas a QP decoder that works on both ASCII and EBCDIC platforms
1162 would look somewhat like the following (where the @a2e array is omitted
1163 for brevity):
1164
1165 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr $a2e[hex $1]/ge;
1166 $string =~ s/=[\n\r]+$//;
1167
1168 Caesarian ciphers
1169 The practice of shifting an alphabet one or more characters for
1170 encipherment dates back thousands of years and was explicitly detailed
1171 by Gaius Julius Caesar in his Gallic Wars text. A single alphabet
1172 shift is sometimes referred to as a rotation and the shift amount is
1173 given as a number $n after the string 'rot' or "rot$n". Rot0 and rot26
1174 would designate identity maps on the 26 letter English version of the
1175 Latin alphabet. Rot13 has the interesting property that alternate
1176 subsequent invocations are identity maps (thus rot13 is its own non-
1177 trivial inverse in the group of 26 alphabet rotations). Hence the
1178 following is a rot13 encoder and decoder that will work on ASCII and
1179 EBCDIC platforms:
1180
1181 #!/usr/local/bin/perl
1182
1183 while(<>){
1184 tr/n-za-mN-ZA-M/a-zA-Z/;
1185 print;
1186 }
1187
1188 In one-liner form:
1189
1190 perl -ne 'tr/n-za-mN-ZA-M/a-zA-Z/;print'
1191
1193 To the extent that it is possible to write code that depends on hashing
1194 order there may be differences between hashes as stored on an ASCII
1195 based platform and hashes stored on an EBCDIC based platform. XXX
1196
1198 Internationalization(I18N) and localization(L10N) are supported at
1199 least in principle even on EBCDIC platforms. The details are system
1200 dependent and discussed under the "OS ISSUES" in perlebcdic section
1201 below.
1202
1204 Perl may work with an internal UTF-EBCDIC encoding form for wide
1205 characters on EBCDIC platforms in a manner analogous to the way that it
1206 works with the UTF-8 internal encoding form on ASCII based platforms.
1207
1208 Legacy multi byte EBCDIC code pages XXX.
1209
1211 There may be a few system dependent issues of concern to EBCDIC Perl
1212 programmers.
1213
1214 OS/400
1215 PASE The PASE environment is runtime environment for OS/400 that can
1216 run executables built for PowerPC AIX in OS/400, see perlos400.
1217 PASE is ASCII-based, not EBCDIC-based as the ILE.
1218
1219 IFS access
1220 XXX.
1221
1222 OS/390, z/OS
1223 Perl runs under Unix Systems Services or USS.
1224
1225 chcp chcp is supported as a shell utility for displaying and
1226 changing one's code page. See also chcp.
1227
1228 dataset access
1229 For sequential data set access try:
1230
1231 my @ds_records = `cat //DSNAME`;
1232
1233 or:
1234
1235 my @ds_records = `cat //'HLQ.DSNAME'`;
1236
1237 See also the OS390::Stdio module on CPAN.
1238
1239 OS/390, z/OS iconv
1240 iconv is supported as both a shell utility and a C RTL routine.
1241 See also the iconv(1) and iconv(3) manual pages.
1242
1243 locales On OS/390 or z/OS see locale for information on locales. The
1244 L10N files are in /usr/nls/locale. $Config{d_setlocale} is
1245 'define' on OS/390 or z/OS.
1246
1247 VM/ESA?
1248 XXX.
1249
1250 POSIX-BC?
1251 XXX.
1252
1254 This pod document contains literal Latin 1 characters and may encounter
1255 translation difficulties. In particular one popular nroff
1256 implementation was known to strip accented characters to their
1257 unaccented counterparts while attempting to view this document through
1258 the pod2man program (for example, you may see a plain "y" rather than
1259 one with a diaeresis as in ye). Another nroff truncated the resultant
1260 manpage at the first occurrence of 8 bit characters.
1261
1262 Not all shells will allow multiple "-e" string arguments to perl to be
1263 concatenated together properly as recipes 0, 2, 4, 5, and 6 might seem
1264 to imply.
1265
1267 perllocale, perlfunc, perlunicode, utf8.
1268
1270 <http://anubis.dkuug.dk/i18n/charmaps>
1271
1272 <http://www.unicode.org/>
1273
1274 <http://www.unicode.org/unicode/reports/tr16/>
1275
1276 <http://www.wps.com/texts/codes/> ASCII: American Standard Code for
1277 Information Infiltration Tom Jennings, September 1999.
1278
1279 The Unicode Standard, Version 3.0 The Unicode Consortium, Lisa Moore
1280 ed., ISBN 0-201-61633-5, Addison Wesley Developers Press, February
1281 2000.
1282
1283 CDRA: IBM - Character Data Representation Architecture - Reference and
1284 Registry, IBM SC09-2190-00, December 1996.
1285
1286 "Demystifying Character Sets", Andrea Vine, Multilingual Computing &
1287 Technology, #26 Vol. 10 Issue 4, August/September 1999; ISSN 1523-0309;
1288 Multilingual Computing Inc. Sandpoint ID, USA.
1289
1290 Codes, Ciphers, and Other Cryptic and Clandestine Communication Fred B.
1291 Wrixon, ISBN 1-57912-040-7, Black Dog & Leventhal Publishers, 1998.
1292
1293 <http://www.bobbemer.com/P-BIT.HTM> IBM - EBCDIC and the P-bit; The
1294 biggest Computer Goof Ever Robert Bemer.
1295
1297 15 April 2001: added UTF-8 and UTF-EBCDIC to main table, pvhp.
1298
1300 Peter Prymmer pvhp@best.com wrote this in 1999 and 2000 with CCSID 0819
1301 and 0037 help from Chris Leach and Andre Pirard A.Pirard@ulg.ac.be as
1302 well as POSIX-BC help from Thomas Dorner Thomas.Dorner@start.de.
1303 Thanks also to Vickie Cooper, Philip Newton, William Raffloer, and Joe
1304 Smith. Trademarks, registered trademarks, service marks and registered
1305 service marks used in this document are the property of their
1306 respective owners.
1307
1308
1309
1310perl v5.10.1 2009-04-11 PERLEBCDIC(1)