1PERLEBCDIC(1) Perl Programmers Reference Guide PERLEBCDIC(1)
2
3
4
6 perlebcdic - Considerations for running Perl on EBCDIC platforms
7
9 An exploration of some of the issues facing Perl programmers on EBCDIC
10 based computers. We do not cover localization, internationalization,
11 or multi byte character set issues other than some discussion of UTF-8
12 and UTF-EBCDIC.
13
14 Portions that are still incomplete are marked with XXX.
15
16 Perl used to work on EBCDIC machines, but there are now areas of the
17 code where it doesn't. If you want to use Perl on an EBCDIC machine,
18 please let us know by sending mail to perlbug@perl.org
19
21 ASCII
22 The American Standard Code for Information Interchange (ASCII or US-
23 ASCII) is a set of integers running from 0 to 127 (decimal) that imply
24 character interpretation by the display and other systems of computers.
25 The range 0..127 can be covered by setting the bits in a 7-bit binary
26 digit, hence the set is sometimes referred to as a "7-bit ASCII".
27 ASCII was described by the American National Standards Institute
28 document ANSI X3.4-1986. It was also described by ISO 646:1991 (with
29 localization for currency symbols). The full ASCII set is given in the
30 table below as the first 128 elements. Languages that can be written
31 adequately with the characters in ASCII include English, Hawaiian,
32 Indonesian, Swahili and some Native American languages.
33
34 There are many character sets that extend the range of integers from
35 0..2**7-1 up to 2**8-1, or 8 bit bytes (octets if you prefer). One
36 common one is the ISO 8859-1 character set.
37
38 ISO 8859
39 The ISO 8859-$n are a collection of character code sets from the
40 International Organization for Standardization (ISO) each of which adds
41 characters to the ASCII set that are typically found in European
42 languages many of which are based on the Roman, or Latin, alphabet.
43
44 Latin 1 (ISO 8859-1)
45 A particular 8-bit extension to ASCII that includes grave and acute
46 accented Latin characters. Languages that can employ ISO 8859-1
47 include all the languages covered by ASCII as well as Afrikaans,
48 Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian,
49 Portuguese, Spanish, and Swedish. Dutch is covered albeit without the
50 ij ligature. French is covered too but without the oe ligature.
51 German can use ISO 8859-1 but must do so without German-style quotation
52 marks. This set is based on Western European extensions to ASCII and
53 is commonly encountered in world wide web work. In IBM character code
54 set identification terminology ISO 8859-1 is also known as CCSID 819
55 (or sometimes 0819 or even 00819).
56
57 EBCDIC
58 The Extended Binary Coded Decimal Interchange Code refers to a large
59 collection of single and multi byte coded character sets that are
60 different from ASCII or ISO 8859-1 and are all slightly different from
61 each other; they typically run on host computers. The EBCDIC encodings
62 derive from 8 bit byte extensions of Hollerith punched card encodings.
63 The layout on the cards was such that high bits were set for the upper
64 and lower case alphabet characters [a-z] and [A-Z], but there were gaps
65 within each Latin alphabet range.
66
67 Some IBM EBCDIC character sets may be known by character code set
68 identification numbers (CCSID numbers) or code page numbers.
69
70 Perl can be compiled on platforms that run any of three commonly used
71 EBCDIC character sets, listed below.
72
73 The 13 variant characters
74 Among IBM EBCDIC character code sets there are 13 characters that are
75 often mapped to different integer values. Those characters are known
76 as the 13 "variant" characters and are:
77
78 \ [ ] { } ^ ~ ! # | $ @ `
79
80 When Perl is compiled for a platform, it looks at some of these
81 characters to guess which EBCDIC character set the platform uses, and
82 adapts itself accordingly to that platform. If the platform uses a
83 character set that is not one of the three Perl knows about, Perl will
84 either fail to compile, or mistakenly and silently choose one of the
85 three. They are:
86
87 0037
88 Character code set ID 0037 is a mapping of the ASCII plus Latin-1
89 characters (i.e. ISO 8859-1) to an EBCDIC set. 0037 is used in North
90 American English locales on the OS/400 operating system that runs on
91 AS/400 computers. CCSID 0037 differs from ISO 8859-1 in 237 places, in
92 other words they agree on only 19 code point values.
93
94 1047
95 Character code set ID 1047 is also a mapping of the ASCII plus Latin-1
96 characters (i.e. ISO 8859-1) to an EBCDIC set. 1047 is used under Unix
97 System Services for OS/390 or z/OS, and OpenEdition for VM/ESA. CCSID
98 1047 differs from CCSID 0037 in eight places.
99
100 POSIX-BC
101 The EBCDIC code page in use on Siemens' BS2000 system is distinct from
102 1047 and 0037. It is identified below as the POSIX-BC set.
103
104 Unicode code points versus EBCDIC code points
105 In Unicode terminology a code point is the number assigned to a
106 character: for example, in EBCDIC the character "A" is usually assigned
107 the number 193. In Unicode the character "A" is assigned the number
108 65. This causes a problem with the semantics of the pack/unpack "U",
109 which are supposed to pack Unicode code points to characters and back
110 to numbers. The problem is: which code points to use for code points
111 less than 256? (for 256 and over there's no problem: Unicode code
112 points are used) In EBCDIC, for the low 256 the EBCDIC code points are
113 used. This means that the equivalences
114
115 pack("U", ord($character)) eq $character
116 unpack("U", $character) == ord $character
117
118 will hold. (If Unicode code points were applied consistently over all
119 the possible code points, pack("U",ord("A")) would in EBCDIC equal A
120 with acute or chr(101), and unpack("U", "A") would equal 65, or non-
121 breaking space, not 193, or ord "A".)
122
123 Remaining Perl Unicode problems in EBCDIC
124 · Many of the remaining problems seem to be related to case-
125 insensitive matching
126
127 · The extensions Unicode::Collate and Unicode::Normalized are not
128 supported under EBCDIC, likewise for the encoding pragma.
129
130 Unicode and UTF
131 UTF stands for "Unicode Transformation Format". UTF-8 is an encoding
132 of Unicode into a sequence of 8-bit byte chunks, based on ASCII and
133 Latin-1. The length of a sequence required to represent a Unicode code
134 point depends on the ordinal number of that code point, with larger
135 numbers requiring more bytes. UTF-EBCDIC is like UTF-8, but based on
136 EBCDIC.
137
138 You may see the term "invariant" character or code point. This simply
139 means that the character has the same numeric value when encoded as
140 when not. (Note that this is a very different concept from "The 13
141 variant characters" mentioned above.) For example, the ordinal value
142 of 'A' is 193 in most EBCDIC code pages, and also is 193 when encoded
143 in UTF-EBCDIC. All variant code points occupy at least two bytes when
144 encoded. In UTF-8, the code points corresponding to the lowest 128
145 ordinal numbers (0 - 127: the ASCII characters) are invariant. In UTF-
146 EBCDIC, there are 160 invariant characters. (If you care, the EBCDIC
147 invariants are those characters which have ASCII equivalents, plus
148 those that correspond to the C1 controls (80..9f on ASCII platforms).)
149
150 A string encoded in UTF-EBCDIC may be longer (but never shorter) than
151 one encoded in UTF-8.
152
153 Using Encode
154 Starting from Perl 5.8 you can use the standard new module Encode to
155 translate from EBCDIC to Latin-1 code points. Encode knows about more
156 EBCDIC character sets than Perl can currently be compiled to run on.
157
158 use Encode 'from_to';
159
160 my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );
161
162 # $a is in EBCDIC code points
163 from_to($a, $ebcdic{ord '^'}, 'latin1');
164 # $a is ISO 8859-1 code points
165
166 and from Latin-1 code points to EBCDIC code points
167
168 use Encode 'from_to';
169
170 my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );
171
172 # $a is ISO 8859-1 code points
173 from_to($a, 'latin1', $ebcdic{ord '^'});
174 # $a is in EBCDIC code points
175
176 For doing I/O it is suggested that you use the autotranslating features
177 of PerlIO, see perluniintro.
178
179 Since version 5.8 Perl uses the new PerlIO I/O library. This enables
180 you to use different encodings per IO channel. For example you may use
181
182 use Encode;
183 open($f, ">:encoding(ascii)", "test.ascii");
184 print $f "Hello World!\n";
185 open($f, ">:encoding(cp37)", "test.ebcdic");
186 print $f "Hello World!\n";
187 open($f, ">:encoding(latin1)", "test.latin1");
188 print $f "Hello World!\n";
189 open($f, ">:encoding(utf8)", "test.utf8");
190 print $f "Hello World!\n";
191
192 to get four files containing "Hello World!\n" in ASCII, CP 0037 EBCDIC,
193 ISO 8859-1 (Latin-1) (in this example identical to ASCII since only
194 ASCII characters were printed), and UTF-EBCDIC (in this example
195 identical to normal EBCDIC since only characters that don't differ
196 between EBCDIC and UTF-EBCDIC were printed). See the documentation of
197 Encode::PerlIO for details.
198
199 As the PerlIO layer uses raw IO (bytes) internally, all this totally
200 ignores things like the type of your filesystem (ASCII or EBCDIC).
201
203 The following tables list the ASCII and Latin 1 ordered sets including
204 the subsets: C0 controls (0..31), ASCII graphics (32..7e), delete (7f),
205 C1 controls (80..9f), and Latin-1 (a.k.a. ISO 8859-1) (a0..ff). In the
206 table non-printing control character names as well as the Latin 1
207 extensions to ASCII have been labelled with character names roughly
208 corresponding to The Unicode Standard, Version 3.0 albeit with
209 substitutions such as s/LATIN// and s/VULGAR// in all cases, s/CAPITAL
210 LETTER// in some cases, and s/SMALL LETTER ([A-Z])/\l$1/ in some other
211 cases. The "names" of the controls listed here are the Unicode Version
212 1 names, except for the few that don't have names, in which case the
213 names in the Wikipedia article were used
214 (<http://en.wikipedia.org/wiki/C0_and_C1_control_codes>. The
215 differences between the 0037 and 1047 sets are flagged with ***. The
216 differences between the 1047 and POSIX-BC sets are flagged with ###.
217 All ord() numbers listed are decimal. If you would rather see this
218 table listing octal values then run the table (that is, the pod version
219 of this document since this recipe may not work with a
220 pod2_other_format translation) through:
221
222 recipe 0
223
224 perl -ne 'if(/(.{43})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
225 -e '{printf("%s%-9o%-9o%-9o%o\n",$1,$2,$3,$4,$5)}' perlebcdic.pod
226
227 If you want to retain the UTF-x code points then in script form you
228 might want to write:
229
230 recipe 1
231
232 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
233 while (<FH>) {
234 if (/(.{43})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/) {
235 if ($7 ne '' && $9 ne '') {
236 printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%-3o.%o\n",$1,$2,$3,$4,$5,$6,$7,$8,$9);
237 }
238 elsif ($7 ne '') {
239 printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%o\n",$1,$2,$3,$4,$5,$6,$7,$8);
240 }
241 else {
242 printf("%s%-9o%-9o%-9o%-9o%-9o%o\n",$1,$2,$3,$4,$5,$6,$8);
243 }
244 }
245 }
246
247 If you would rather see this table listing hexadecimal values then run
248 the table through:
249
250 recipe 2
251
252 perl -ne 'if(/(.{43})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
253 -e '{printf("%s%-9X%-9X%-9X%X\n",$1,$2,$3,$4,$5)}' perlebcdic.pod
254
255 Or, in order to retain the UTF-x code points in hexadecimal:
256
257 recipe 3
258
259 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
260 while (<FH>) {
261 if (/(.{43})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/) {
262 if ($7 ne '' && $9 ne '') {
263 printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%-2X.%X\n",$1,$2,$3,$4,$5,$6,$7,$8,$9);
264 }
265 elsif ($7 ne '') {
266 printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%X\n",$1,$2,$3,$4,$5,$6,$7,$8);
267 }
268 else {
269 printf("%s%-9X%-9X%-9X%-9X%-9X%X\n",$1,$2,$3,$4,$5,$6,$8);
270 }
271 }
272 }
273
274
275 ISO 8859-1 CCSID CCSID CCSID 1047
276 chr CCSID 0819 0037 1047 POSIX-BC UTF-8 UTF-EBCDIC
277 ----------------------------------------------------------------------------------------------
278 <NULL> 0 0 0 0 0 0
279 <START OF HEADING> 1 1 1 1 1 1
280 <START OF TEXT> 2 2 2 2 2 2
281 <END OF TEXT> 3 3 3 3 3 3
282 <END OF TRANSMISSION> 4 55 55 55 4 55
283 <ENQUIRY> 5 45 45 45 5 45
284 <ACKNOWLEDGE> 6 46 46 46 6 46
285 <BELL> 7 47 47 47 7 47
286 <BACKSPACE> 8 22 22 22 8 22
287 <HORIZONTAL TABULATION> 9 5 5 5 9 5
288 <LINE FEED> 10 37 21 21 10 21 ***
289 <VERTICAL TABULATION> 11 11 11 11 11 11
290 <FORM FEED> 12 12 12 12 12 12
291 <CARRIAGE RETURN> 13 13 13 13 13 13
292 <SHIFT OUT> 14 14 14 14 14 14
293 <SHIFT IN> 15 15 15 15 15 15
294 <DATA LINK ESCAPE> 16 16 16 16 16 16
295 <DEVICE CONTROL ONE> 17 17 17 17 17 17
296 <DEVICE CONTROL TWO> 18 18 18 18 18 18
297 <DEVICE CONTROL THREE> 19 19 19 19 19 19
298 <DEVICE CONTROL FOUR> 20 60 60 60 20 60
299 <NEGATIVE ACKNOWLEDGE> 21 61 61 61 21 61
300 <SYNCHRONOUS IDLE> 22 50 50 50 22 50
301 <END OF TRANSMISSION BLOCK> 23 38 38 38 23 38
302 <CANCEL> 24 24 24 24 24 24
303 <END OF MEDIUM> 25 25 25 25 25 25
304 <SUBSTITUTE> 26 63 63 63 26 63
305 <ESCAPE> 27 39 39 39 27 39
306 <FILE SEPARATOR> 28 28 28 28 28 28
307 <GROUP SEPARATOR> 29 29 29 29 29 29
308 <RECORD SEPARATOR> 30 30 30 30 30 30
309 <UNIT SEPARATOR> 31 31 31 31 31 31
310 <SPACE> 32 64 64 64 32 64
311 ! 33 90 90 90 33 90
312 " 34 127 127 127 34 127
313 # 35 123 123 123 35 123
314 $ 36 91 91 91 36 91
315 % 37 108 108 108 37 108
316 & 38 80 80 80 38 80
317 ' 39 125 125 125 39 125
318 ( 40 77 77 77 40 77
319 ) 41 93 93 93 41 93
320 * 42 92 92 92 42 92
321 + 43 78 78 78 43 78
322 , 44 107 107 107 44 107
323 - 45 96 96 96 45 96
324 . 46 75 75 75 46 75
325 / 47 97 97 97 47 97
326 0 48 240 240 240 48 240
327 1 49 241 241 241 49 241
328 2 50 242 242 242 50 242
329 3 51 243 243 243 51 243
330 4 52 244 244 244 52 244
331 5 53 245 245 245 53 245
332 6 54 246 246 246 54 246
333 7 55 247 247 247 55 247
334 8 56 248 248 248 56 248
335 9 57 249 249 249 57 249
336 : 58 122 122 122 58 122
337 ; 59 94 94 94 59 94
338 < 60 76 76 76 60 76
339 = 61 126 126 126 61 126
340 > 62 110 110 110 62 110
341 ? 63 111 111 111 63 111
342 @ 64 124 124 124 64 124
343 A 65 193 193 193 65 193
344 B 66 194 194 194 66 194
345 C 67 195 195 195 67 195
346 D 68 196 196 196 68 196
347 E 69 197 197 197 69 197
348 F 70 198 198 198 70 198
349 G 71 199 199 199 71 199
350 H 72 200 200 200 72 200
351 I 73 201 201 201 73 201
352 J 74 209 209 209 74 209
353 K 75 210 210 210 75 210
354 L 76 211 211 211 76 211
355 M 77 212 212 212 77 212
356 N 78 213 213 213 78 213
357 O 79 214 214 214 79 214
358 P 80 215 215 215 80 215
359 Q 81 216 216 216 81 216
360 R 82 217 217 217 82 217
361 S 83 226 226 226 83 226
362 T 84 227 227 227 84 227
363 U 85 228 228 228 85 228
364 V 86 229 229 229 86 229
365 W 87 230 230 230 87 230
366 X 88 231 231 231 88 231
367 Y 89 232 232 232 89 232
368 Z 90 233 233 233 90 233
369 [ 91 186 173 187 91 173 *** ###
370 \ 92 224 224 188 92 224 ###
371 ] 93 187 189 189 93 189 ***
372 ^ 94 176 95 106 94 95 *** ###
373 _ 95 109 109 109 95 109
374 ` 96 121 121 74 96 121 ###
375 a 97 129 129 129 97 129
376 b 98 130 130 130 98 130
377 c 99 131 131 131 99 131
378 d 100 132 132 132 100 132
379 e 101 133 133 133 101 133
380 f 102 134 134 134 102 134
381 g 103 135 135 135 103 135
382 h 104 136 136 136 104 136
383 i 105 137 137 137 105 137
384 j 106 145 145 145 106 145
385 k 107 146 146 146 107 146
386 l 108 147 147 147 108 147
387 m 109 148 148 148 109 148
388 n 110 149 149 149 110 149
389 o 111 150 150 150 111 150
390 p 112 151 151 151 112 151
391 q 113 152 152 152 113 152
392 r 114 153 153 153 114 153
393 s 115 162 162 162 115 162
394 t 116 163 163 163 116 163
395 u 117 164 164 164 117 164
396 v 118 165 165 165 118 165
397 w 119 166 166 166 119 166
398 x 120 167 167 167 120 167
399 y 121 168 168 168 121 168
400 z 122 169 169 169 122 169
401 { 123 192 192 251 123 192 ###
402 | 124 79 79 79 124 79
403 } 125 208 208 253 125 208 ###
404 ~ 126 161 161 255 126 161 ###
405 <DELETE> 127 7 7 7 127 7
406 <PADDING CHARACTER> 128 32 32 32 194.128 32
407 <HIGH OCTET PRESET> 129 33 33 33 194.129 33
408 <BREAK PERMITTED HERE> 130 34 34 34 194.130 34
409 <NO BREAK HERE> 131 35 35 35 194.131 35
410 <INDEX> 132 36 36 36 194.132 36
411 <NEXT LINE> 133 21 37 37 194.133 37 ***
412 <START OF SELECTED AREA> 134 6 6 6 194.134 6
413 <END OF SELECTED AREA> 135 23 23 23 194.135 23
414 <CHARACTER TABULATION SET> 136 40 40 40 194.136 40
415 <CHARACTER TABULATION WITH JUSTIFICATION> 137 41 41 41 194.137 41
416 <LINE TABULATION SET> 138 42 42 42 194.138 42
417 <PARTIAL LINE FORWARD> 139 43 43 43 194.139 43
418 <PARTIAL LINE BACKWARD> 140 44 44 44 194.140 44
419 <REVERSE LINE FEED> 141 9 9 9 194.141 9
420 <SINGLE SHIFT TWO> 142 10 10 10 194.142 10
421 <SINGLE SHIFT THREE> 143 27 27 27 194.143 27
422 <DEVICE CONTROL STRING> 144 48 48 48 194.144 48
423 <PRIVATE USE ONE> 145 49 49 49 194.145 49
424 <PRIVATE USE TWO> 146 26 26 26 194.146 26
425 <SET TRANSMIT STATE> 147 51 51 51 194.147 51
426 <CANCEL CHARACTER> 148 52 52 52 194.148 52
427 <MESSAGE WAITING> 149 53 53 53 194.149 53
428 <START OF GUARDED AREA> 150 54 54 54 194.150 54
429 <END OF GUARDED AREA> 151 8 8 8 194.151 8
430 <START OF STRING> 152 56 56 56 194.152 56
431 <SINGLE GRAPHIC CHARACTER INTRODUCER> 153 57 57 57 194.153 57
432 <SINGLE CHARACTER INTRODUCER> 154 58 58 58 194.154 58
433 <CONTROL SEQUENCE INTRODUCER> 155 59 59 59 194.155 59
434 <STRING TERMINATOR> 156 4 4 4 194.156 4
435 <OPERATING SYSTEM COMMAND> 157 20 20 20 194.157 20
436 <PRIVACY MESSAGE> 158 62 62 62 194.158 62
437 <APPLICATION PROGRAM COMMAND> 159 255 255 95 194.159 255 ###
438 <NON-BREAKING SPACE> 160 65 65 65 194.160 128.65
439 <INVERTED EXCLAMATION MARK> 161 170 170 170 194.161 128.66
440 <CENT SIGN> 162 74 74 176 194.162 128.67 ###
441 <POUND SIGN> 163 177 177 177 194.163 128.68
442 <CURRENCY SIGN> 164 159 159 159 194.164 128.69
443 <YEN SIGN> 165 178 178 178 194.165 128.70
444 <BROKEN BAR> 166 106 106 208 194.166 128.71 ###
445 <SECTION SIGN> 167 181 181 181 194.167 128.72
446 <DIAERESIS> 168 189 187 121 194.168 128.73 *** ###
447 <COPYRIGHT SIGN> 169 180 180 180 194.169 128.74
448 <FEMININE ORDINAL INDICATOR> 170 154 154 154 194.170 128.81
449 <LEFT POINTING GUILLEMET> 171 138 138 138 194.171 128.82
450 <NOT SIGN> 172 95 176 186 194.172 128.83 *** ###
451 <SOFT HYPHEN> 173 202 202 202 194.173 128.84
452 <REGISTERED TRADE MARK SIGN> 174 175 175 175 194.174 128.85
453 <MACRON> 175 188 188 161 194.175 128.86 ###
454 <DEGREE SIGN> 176 144 144 144 194.176 128.87
455 <PLUS-OR-MINUS SIGN> 177 143 143 143 194.177 128.88
456 <SUPERSCRIPT TWO> 178 234 234 234 194.178 128.89
457 <SUPERSCRIPT THREE> 179 250 250 250 194.179 128.98
458 <ACUTE ACCENT> 180 190 190 190 194.180 128.99
459 <MICRO SIGN> 181 160 160 160 194.181 128.100
460 <PARAGRAPH SIGN> 182 182 182 182 194.182 128.101
461 <MIDDLE DOT> 183 179 179 179 194.183 128.102
462 <CEDILLA> 184 157 157 157 194.184 128.103
463 <SUPERSCRIPT ONE> 185 218 218 218 194.185 128.104
464 <MASC. ORDINAL INDICATOR> 186 155 155 155 194.186 128.105
465 <RIGHT POINTING GUILLEMET> 187 139 139 139 194.187 128.106
466 <FRACTION ONE QUARTER> 188 183 183 183 194.188 128.112
467 <FRACTION ONE HALF> 189 184 184 184 194.189 128.113
468 <FRACTION THREE QUARTERS> 190 185 185 185 194.190 128.114
469 <INVERTED QUESTION MARK> 191 171 171 171 194.191 128.115
470 <A WITH GRAVE> 192 100 100 100 195.128 138.65
471 <A WITH ACUTE> 193 101 101 101 195.129 138.66
472 <A WITH CIRCUMFLEX> 194 98 98 98 195.130 138.67
473 <A WITH TILDE> 195 102 102 102 195.131 138.68
474 <A WITH DIAERESIS> 196 99 99 99 195.132 138.69
475 <A WITH RING ABOVE> 197 103 103 103 195.133 138.70
476 <CAPITAL LIGATURE AE> 198 158 158 158 195.134 138.71
477 <C WITH CEDILLA> 199 104 104 104 195.135 138.72
478 <E WITH GRAVE> 200 116 116 116 195.136 138.73
479 <E WITH ACUTE> 201 113 113 113 195.137 138.74
480 <E WITH CIRCUMFLEX> 202 114 114 114 195.138 138.81
481 <E WITH DIAERESIS> 203 115 115 115 195.139 138.82
482 <I WITH GRAVE> 204 120 120 120 195.140 138.83
483 <I WITH ACUTE> 205 117 117 117 195.141 138.84
484 <I WITH CIRCUMFLEX> 206 118 118 118 195.142 138.85
485 <I WITH DIAERESIS> 207 119 119 119 195.143 138.86
486 <CAPITAL LETTER ETH> 208 172 172 172 195.144 138.87
487 <N WITH TILDE> 209 105 105 105 195.145 138.88
488 <O WITH GRAVE> 210 237 237 237 195.146 138.89
489 <O WITH ACUTE> 211 238 238 238 195.147 138.98
490 <O WITH CIRCUMFLEX> 212 235 235 235 195.148 138.99
491 <O WITH TILDE> 213 239 239 239 195.149 138.100
492 <O WITH DIAERESIS> 214 236 236 236 195.150 138.101
493 <MULTIPLICATION SIGN> 215 191 191 191 195.151 138.102
494 <O WITH STROKE> 216 128 128 128 195.152 138.103
495 <U WITH GRAVE> 217 253 253 224 195.153 138.104 ###
496 <U WITH ACUTE> 218 254 254 254 195.154 138.105
497 <U WITH CIRCUMFLEX> 219 251 251 221 195.155 138.106 ###
498 <U WITH DIAERESIS> 220 252 252 252 195.156 138.112
499 <Y WITH ACUTE> 221 173 186 173 195.157 138.113 *** ###
500 <CAPITAL LETTER THORN> 222 174 174 174 195.158 138.114
501 <SMALL LETTER SHARP S> 223 89 89 89 195.159 138.115
502 <a WITH GRAVE> 224 68 68 68 195.160 139.65
503 <a WITH ACUTE> 225 69 69 69 195.161 139.66
504 <a WITH CIRCUMFLEX> 226 66 66 66 195.162 139.67
505 <a WITH TILDE> 227 70 70 70 195.163 139.68
506 <a WITH DIAERESIS> 228 67 67 67 195.164 139.69
507 <a WITH RING ABOVE> 229 71 71 71 195.165 139.70
508 <SMALL LIGATURE ae> 230 156 156 156 195.166 139.71
509 <c WITH CEDILLA> 231 72 72 72 195.167 139.72
510 <e WITH GRAVE> 232 84 84 84 195.168 139.73
511 <e WITH ACUTE> 233 81 81 81 195.169 139.74
512 <e WITH CIRCUMFLEX> 234 82 82 82 195.170 139.81
513 <e WITH DIAERESIS> 235 83 83 83 195.171 139.82
514 <i WITH GRAVE> 236 88 88 88 195.172 139.83
515 <i WITH ACUTE> 237 85 85 85 195.173 139.84
516 <i WITH CIRCUMFLEX> 238 86 86 86 195.174 139.85
517 <i WITH DIAERESIS> 239 87 87 87 195.175 139.86
518 <SMALL LETTER eth> 240 140 140 140 195.176 139.87
519 <n WITH TILDE> 241 73 73 73 195.177 139.88
520 <o WITH GRAVE> 242 205 205 205 195.178 139.89
521 <o WITH ACUTE> 243 206 206 206 195.179 139.98
522 <o WITH CIRCUMFLEX> 244 203 203 203 195.180 139.99
523 <o WITH TILDE> 245 207 207 207 195.181 139.100
524 <o WITH DIAERESIS> 246 204 204 204 195.182 139.101
525 <DIVISION SIGN> 247 225 225 225 195.183 139.102
526 <o WITH STROKE> 248 112 112 112 195.184 139.103
527 <u WITH GRAVE> 249 221 221 192 195.185 139.104 ###
528 <u WITH ACUTE> 250 222 222 222 195.186 139.105
529 <u WITH CIRCUMFLEX> 251 219 219 219 195.187 139.106
530 <u WITH DIAERESIS> 252 220 220 220 195.188 139.112
531 <y WITH ACUTE> 253 141 141 141 195.189 139.113
532 <SMALL LETTER thorn> 254 142 142 142 195.190 139.114
533 <y WITH DIAERESIS> 255 223 223 223 195.191 139.115
534
535 If you would rather see the above table in CCSID 0037 order rather than
536 ASCII + Latin-1 order then run the table through:
537
538 recipe 4
539
540 perl -ne 'if(/.{43}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
541 -e '{push(@l,$_)}' \
542 -e 'END{print map{$_->[0]}' \
543 -e ' sort{$a->[1] <=> $b->[1]}' \
544 -e ' map{[$_,substr($_,52,3)]}@l;}' perlebcdic.pod
545
546 If you would rather see it in CCSID 1047 order then change the number
547 52 in the last line to 61, like this:
548
549 recipe 5
550
551 perl -ne 'if(/.{43}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
552 -e '{push(@l,$_)}' \
553 -e 'END{print map{$_->[0]}' \
554 -e ' sort{$a->[1] <=> $b->[1]}' \
555 -e ' map{[$_,substr($_,61,3)]}@l;}' perlebcdic.pod
556
557 If you would rather see it in POSIX-BC order then change the number 61
558 in the last line to 70, like this:
559
560 recipe 6
561
562 perl -ne 'if(/.{43}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
563 -e '{push(@l,$_)}' \
564 -e 'END{print map{$_->[0]}' \
565 -e ' sort{$a->[1] <=> $b->[1]}' \
566 -e ' map{[$_,substr($_,70,3)]}@l;}' perlebcdic.pod
567
569 To determine the character set you are running under from perl one
570 could use the return value of ord() or chr() to test one or more
571 character values. For example:
572
573 $is_ascii = "A" eq chr(65);
574 $is_ebcdic = "A" eq chr(193);
575
576 Also, "\t" is a "HORIZONTAL TABULATION" character so that:
577
578 $is_ascii = ord("\t") == 9;
579 $is_ebcdic = ord("\t") == 5;
580
581 To distinguish EBCDIC code pages try looking at one or more of the
582 characters that differ between them. For example:
583
584 $is_ebcdic_37 = "\n" eq chr(37);
585 $is_ebcdic_1047 = "\n" eq chr(21);
586
587 Or better still choose a character that is uniquely encoded in any of
588 the code sets, e.g.:
589
590 $is_ascii = ord('[') == 91;
591 $is_ebcdic_37 = ord('[') == 186;
592 $is_ebcdic_1047 = ord('[') == 173;
593 $is_ebcdic_POSIX_BC = ord('[') == 187;
594
595 However, it would be unwise to write tests such as:
596
597 $is_ascii = "\r" ne chr(13); # WRONG
598 $is_ascii = "\n" ne chr(10); # ILL ADVISED
599
600 Obviously the first of these will fail to distinguish most ASCII
601 platforms from either a CCSID 0037, a 1047, or a POSIX-BC EBCDIC
602 platform since "\r" eq chr(13) under all of those coded character sets.
603 But note too that because "\n" is chr(13) and "\r" is chr(10) on the
604 MacIntosh (which is an ASCII platform) the second $is_ascii test will
605 lead to trouble there.
606
607 To determine whether or not perl was built under an EBCDIC code page
608 you can use the Config module like so:
609
610 use Config;
611 $is_ebcdic = $Config{'ebcdic'} eq 'define';
612
614 tr///
615 In order to convert a string of characters from one character set to
616 another a simple list of numbers, such as in the right columns in the
617 above table, along with perl's tr/// operator is all that is needed.
618 The data in the table are in ASCII order hence the EBCDIC columns
619 provide easy to use ASCII to EBCDIC operations that are also easily
620 reversed.
621
622 For example, to convert ASCII to code page 037 take the output of the
623 second column from the output of recipe 0 (modified to add \\
624 characters) and use it in tr/// like so:
625
626 $cp_037 =
627 '\000\001\002\003\234\011\206\177\227\215\216\013\014\015\016\017' .
628 '\020\021\022\023\235\205\010\207\030\031\222\217\034\035\036\037' .
629 '\200\201\202\203\204\012\027\033\210\211\212\213\214\005\006\007' .
630 '\220\221\026\223\224\225\226\004\230\231\232\233\024\025\236\032' .
631 '\040\240\342\344\340\341\343\345\347\361\242\056\074\050\053\174' .
632 '\046\351\352\353\350\355\356\357\354\337\041\044\052\051\073\254' .
633 '\055\057\302\304\300\301\303\305\307\321\246\054\045\137\076\077' .
634 '\370\311\312\313\310\315\316\317\314\140\072\043\100\047\075\042' .
635 '\330\141\142\143\144\145\146\147\150\151\253\273\360\375\376\261' .
636 '\260\152\153\154\155\156\157\160\161\162\252\272\346\270\306\244' .
637 '\265\176\163\164\165\166\167\170\171\172\241\277\320\335\336\256' .
638 '\136\243\245\267\251\247\266\274\275\276\133\135\257\250\264\327' .
639 '\173\101\102\103\104\105\106\107\110\111\255\364\366\362\363\365' .
640 '\175\112\113\114\115\116\117\120\121\122\271\373\374\371\372\377' .
641 '\134\367\123\124\125\126\127\130\131\132\262\324\326\322\323\325' .
642 '\060\061\062\063\064\065\066\067\070\071\263\333\334\331\332\237' ;
643
644 my $ebcdic_string = $ascii_string;
645 eval '$ebcdic_string =~ tr/' . $cp_037 . '/\000-\377/';
646
647 To convert from EBCDIC 037 to ASCII just reverse the order of the tr///
648 arguments like so:
649
650 my $ascii_string = $ebcdic_string;
651 eval '$ascii_string =~ tr/\000-\377/' . $cp_037 . '/';
652
653 Similarly one could take the output of the third column from recipe 0
654 to obtain a $cp_1047 table. The fourth column of the output from
655 recipe 0 could provide a $cp_posix_bc table suitable for transcoding as
656 well.
657
658 iconv
659 XPG operability often implies the presence of an iconv utility
660 available from the shell or from the C library. Consult your system's
661 documentation for information on iconv.
662
663 On OS/390 or z/OS see the iconv(1) manpage. One way to invoke the
664 iconv shell utility from within perl would be to:
665
666 # OS/390 or z/OS example
667 $ascii_data = `echo '$ebcdic_data'| iconv -f IBM-1047 -t ISO8859-1`
668
669 or the inverse map:
670
671 # OS/390 or z/OS example
672 $ebcdic_data = `echo '$ascii_data'| iconv -f ISO8859-1 -t IBM-1047`
673
674 For other perl based conversion options see the Convert::* modules on
675 CPAN.
676
677 C RTL
678 The OS/390 and z/OS C run time libraries provide _atoe() and _etoa()
679 functions.
680
682 The ".." range operator treats certain character ranges with care on
683 EBCDIC platforms. For example the following array will have twenty six
684 elements on either an EBCDIC platform or an ASCII platform:
685
686 @alphabet = ('A'..'Z'); # $#alphabet == 25
687
688 The bitwise operators such as & ^ | may return different results when
689 operating on string or character data in a perl program running on an
690 EBCDIC platform than when run on an ASCII platform. Here is an example
691 adapted from the one in perlop:
692
693 # EBCDIC-based examples
694 print "j p \n" ^ " a h"; # prints "JAPH\n"
695 print "JA" | " ph\n"; # prints "japh\n"
696 print "JAPH\nJunk" & "\277\277\277\277\277"; # prints "japh\n";
697 print 'p N$' ^ " E<H\n"; # prints "Perl\n";
698
699 An interesting property of the 32 C0 control characters in the ASCII
700 table is that they can "literally" be constructed as control characters
701 in perl, e.g. "(chr(0) eq "\c@")" "(chr(1) eq "\cA")", and so on. Perl
702 on EBCDIC platforms has been ported to take "\c@" to chr(0) and "\cA"
703 to chr(1), etc. as well, but the thirty three characters that result
704 depend on which code page you are using. The table below uses the
705 standard acronyms for the controls. The POSIX-BC and 1047 sets are
706 identical throughout this range and differ from the 0037 set at only
707 one spot (21 decimal). Note that the "LINE FEED" character may be
708 generated by "\cJ" on ASCII platforms but by "\cU" on 1047 or POSIX-BC
709 platforms and cannot be generated as a "\c.letter." control character
710 on 0037 platforms. Note also that "\c\" cannot be the final element in
711 a string or regex, as it will absorb the terminator. But "\c\X" is a
712 "FILE SEPARATOR" concatenated with X for all X.
713
714 chr ord 8859-1 0037 1047 && POSIX-BC
715 ------------------------------------------------------------------------
716 \c? 127 <DEL> " "
717 \c@ 0 <NUL> <NUL> <NUL>
718 \cA 1 <SOH> <SOH> <SOH>
719 \cB 2 <STX> <STX> <STX>
720 \cC 3 <ETX> <ETX> <ETX>
721 \cD 4 <EOT> <ST> <ST>
722 \cE 5 <ENQ> <HT> <HT>
723 \cF 6 <ACK> <SSA> <SSA>
724 \cG 7 <BEL> <DEL> <DEL>
725 \cH 8 <BS> <EPA> <EPA>
726 \cI 9 <HT> <RI> <RI>
727 \cJ 10 <LF> <SS2> <SS2>
728 \cK 11 <VT> <VT> <VT>
729 \cL 12 <FF> <FF> <FF>
730 \cM 13 <CR> <CR> <CR>
731 \cN 14 <SO> <SO> <SO>
732 \cO 15 <SI> <SI> <SI>
733 \cP 16 <DLE> <DLE> <DLE>
734 \cQ 17 <DC1> <DC1> <DC1>
735 \cR 18 <DC2> <DC2> <DC2>
736 \cS 19 <DC3> <DC3> <DC3>
737 \cT 20 <DC4> <OSC> <OSC>
738 \cU 21 <NAK> <NEL> <LF> ***
739 \cV 22 <SYN> <BS> <BS>
740 \cW 23 <ETB> <ESA> <ESA>
741 \cX 24 <CAN> <CAN> <CAN>
742 \cY 25 <EOM> <EOM> <EOM>
743 \cZ 26 <SUB> <PU2> <PU2>
744 \c[ 27 <ESC> <SS3> <SS3>
745 \c\X 28 <FS>X <FS>X <FS>X
746 \c] 29 <GS> <GS> <GS>
747 \c^ 30 <RS> <RS> <RS>
748 \c_ 31 <US> <US> <US>
749
751 chr() chr() must be given an EBCDIC code number argument to yield a
752 desired character return value on an EBCDIC platform. For
753 example:
754
755 $CAPITAL_LETTER_A = chr(193);
756
757 ord() ord() will return EBCDIC code number values on an EBCDIC
758 platform. For example:
759
760 $the_number_193 = ord("A");
761
762 pack() The c and C templates for pack() are dependent upon character
763 set encoding. Examples of usage on EBCDIC include:
764
765 $foo = pack("CCCC",193,194,195,196);
766 # $foo eq "ABCD"
767 $foo = pack("C4",193,194,195,196);
768 # same thing
769
770 $foo = pack("ccxxcc",193,194,195,196);
771 # $foo eq "AB\0\0CD"
772
773 print() One must be careful with scalars and strings that are passed to
774 print that contain ASCII encodings. One common place for this
775 to occur is in the output of the MIME type header for CGI
776 script writing. For example, many perl programming guides
777 recommend something similar to:
778
779 print "Content-type:\ttext/html\015\012\015\012";
780 # this may be wrong on EBCDIC
781
782 Under the IBM OS/390 USS Web Server or WebSphere on z/OS for
783 example you should instead write that as:
784
785 print "Content-type:\ttext/html\r\n\r\n"; # OK for DGW et alia
786
787 That is because the translation from EBCDIC to ASCII is done by
788 the web server in this case (such code will not be appropriate
789 for the Macintosh however). Consult your web server's
790 documentation for further details.
791
792 printf()
793 The formats that can convert characters to numbers and vice
794 versa will be different from their ASCII counterparts when
795 executed on an EBCDIC platform. Examples include:
796
797 printf("%c%c%c",193,194,195); # prints ABC
798
799 sort() EBCDIC sort results may differ from ASCII sort results
800 especially for mixed case strings. This is discussed in more
801 detail below.
802
803 sprintf()
804 See the discussion of printf() above. An example of the use of
805 sprintf would be:
806
807 $CAPITAL_LETTER_A = sprintf("%c",193);
808
809 unpack()
810 See the discussion of pack() above.
811
813 As of perl 5.005_03 the letter range regular expression such as [A-Z]
814 and [a-z] have been especially coded to not pick up gap characters.
815 For example, characters such as o "o WITH CIRCUMFLEX" that lie between
816 I and J would not be matched by the regular expression range "/[H-K]/".
817 This works in the other direction, too, if either of the range end
818 points is explicitly numeric: "[\x89-\x91]" will match "\x8e", even
819 though "\x89" is "i" and "\x91 " is "j", and "\x8e" is a gap character
820 from the alphabetic viewpoint.
821
822 If you do want to match the alphabet gap characters in a single octet
823 regular expression try matching the hex or octal code such as "/\313/"
824 on EBCDIC or "/\364/" on ASCII platforms to have your regular
825 expression match "o WITH CIRCUMFLEX".
826
827 Another construct to be wary of is the inappropriate use of hex or
828 octal constants in regular expressions. Consider the following set of
829 subs:
830
831 sub is_c0 {
832 my $char = substr(shift,0,1);
833 $char =~ /[\000-\037]/;
834 }
835
836 sub is_print_ascii {
837 my $char = substr(shift,0,1);
838 $char =~ /[\040-\176]/;
839 }
840
841 sub is_delete {
842 my $char = substr(shift,0,1);
843 $char eq "\177";
844 }
845
846 sub is_c1 {
847 my $char = substr(shift,0,1);
848 $char =~ /[\200-\237]/;
849 }
850
851 sub is_latin_1 {
852 my $char = substr(shift,0,1);
853 $char =~ /[\240-\377]/;
854 }
855
856 The above would be adequate if the concern was only with numeric code
857 points. However, the concern may be with characters rather than code
858 points and on an EBCDIC platform it may be desirable for constructs
859 such as "if (is_print_ascii("A")) {print "A is a printable
860 character\n";}" to print out the expected message. One way to
861 represent the above collection of character classification subs that is
862 capable of working across the four coded character sets discussed in
863 this document is as follows:
864
865 sub Is_c0 {
866 my $char = substr(shift,0,1);
867 if (ord('^')==94) { # ascii
868 return $char =~ /[\000-\037]/;
869 }
870 if (ord('^')==176) { # 0037
871 return $char =~ /[\000-\003\067\055-\057\026\005\045\013-\023\074\075\062\046\030\031\077\047\034-\037]/;
872 }
873 if (ord('^')==95 || ord('^')==106) { # 1047 || posix-bc
874 return $char =~ /[\000-\003\067\055-\057\026\005\025\013-\023\074\075\062\046\030\031\077\047\034-\037]/;
875 }
876 }
877
878 sub Is_print_ascii {
879 my $char = substr(shift,0,1);
880 $char =~ /[ !"\#\$%&'()*+,\-.\/0-9:;<=>?\@A-Z[\\\]^_`a-z{|}~]/;
881 }
882
883 sub Is_delete {
884 my $char = substr(shift,0,1);
885 if (ord('^')==94) { # ascii
886 return $char eq "\177";
887 }
888 else { # ebcdic
889 return $char eq "\007";
890 }
891 }
892
893 sub Is_c1 {
894 my $char = substr(shift,0,1);
895 if (ord('^')==94) { # ascii
896 return $char =~ /[\200-\237]/;
897 }
898 if (ord('^')==176) { # 0037
899 return $char =~ /[\040-\044\025\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\377]/;
900 }
901 if (ord('^')==95) { # 1047
902 return $char =~ /[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\377]/;
903 }
904 if (ord('^')==106) { # posix-bc
905 return $char =~
906 /[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\137]/;
907 }
908 }
909
910 sub Is_latin_1 {
911 my $char = substr(shift,0,1);
912 if (ord('^')==94) { # ascii
913 return $char =~ /[\240-\377]/;
914 }
915 if (ord('^')==176) { # 0037
916 return $char =~
917 /[\101\252\112\261\237\262\152\265\275\264\232\212\137\312\257\274\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\375\376\373\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]/;
918 }
919 if (ord('^')==95) { # 1047
920 return $char =~
921 /[\101\252\112\261\237\262\152\265\273\264\232\212\260\312\257\274\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\375\376\373\374\272\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]/;
922 }
923 if (ord('^')==106) { # posix-bc
924 return $char =~
925 /[\101\252\260\261\237\262\320\265\171\264\232\212\272\312\257\241\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\340\376\335\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\300\336\333\334\215\216\337]/;
926 }
927 }
928
929 Note however that only the "Is_ascii_print()" sub is really independent
930 of coded character set. Another way to write "Is_latin_1()" would be
931 to use the characters in the range explicitly:
932
933 sub Is_latin_1 {
934 my $char = substr(shift,0,1);
935 $char =~ /[A~XA A~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XA A~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAX]/;
936 }
937
938 Although that form may run into trouble in network transit (due to the
939 presence of 8 bit characters) or on non ISO-Latin character sets.
940
942 Most socket programming assumes ASCII character encodings in network
943 byte order. Exceptions can include CGI script writing under a host web
944 server where the server may take care of translation for you. Most
945 host web servers convert EBCDIC data to ISO-8859-1 or Unicode on
946 output.
947
949 One big difference between ASCII based character sets and EBCDIC ones
950 are the relative positions of upper and lower case letters and the
951 letters compared to the digits. If sorted on an ASCII based platform
952 the two letter abbreviation for a physician comes before the two letter
953 for drive, that is:
954
955 @sorted = sort(qw(Dr. dr.)); # @sorted holds ('Dr.','dr.') on ASCII,
956 # but ('dr.','Dr.') on EBCDIC
957
958 The property of lower case before uppercase letters in EBCDIC is even
959 carried to the Latin 1 EBCDIC pages such as 0037 and 1047. An example
960 would be that Ee "E WITH DIAERESIS" (203) comes before ee "e WITH
961 DIAERESIS" (235) on an ASCII platform, but the latter (83) comes before
962 the former (115) on an EBCDIC platform. (Astute readers will note that
963 the upper case version of ss "SMALL LETTER SHARP S" is simply "SS" and
964 that the upper case version of ye "y WITH DIAERESIS" is not in the
965 0..255 range but it is at U+x0178 in Unicode, or "\x{178}" in a Unicode
966 enabled Perl).
967
968 The sort order will cause differences between results obtained on ASCII
969 platforms versus EBCDIC platforms. What follows are some suggestions
970 on how to deal with these differences.
971
972 Ignore ASCII vs. EBCDIC sort differences.
973 This is the least computationally expensive strategy. It may require
974 some user education.
975
976 MONO CASE then sort data.
977 In order to minimize the expense of mono casing mixed test try to
978 "tr///" towards the character set case most employed within the data.
979 If the data are primarily UPPERCASE non Latin 1 then apply
980 tr/[a-z]/[A-Z]/ then sort(). If the data are primarily lowercase non
981 Latin 1 then apply tr/[A-Z]/[a-z]/ before sorting. If the data are
982 primarily UPPERCASE and include Latin-1 characters then apply:
983
984 tr/[a-z]/[A-Z]/;
985 tr/[A~XA A~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAX]/[A~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAXA~XAX/;
986 s/A~XAX/SS/g;
987
988 then sort(). Do note however that such Latin-1 manipulation does not
989 address the ye "y WITH DIAERESIS" character that will remain at code
990 point 255 on ASCII platforms, but 223 on most EBCDIC platforms where it
991 will sort to a place less than the EBCDIC numerals. With a Unicode
992 enabled Perl you might try:
993
994 tr/^?/\x{178}/;
995
996 The strategy of mono casing data before sorting does not preserve the
997 case of the data and may not be acceptable for that reason.
998
999 Convert, sort data, then re convert.
1000 This is the most expensive proposition that does not employ a network
1001 connection.
1002
1003 Perform sorting on one type of platform only.
1004 This strategy can employ a network connection. As such it would be
1005 computationally expensive.
1006
1008 There are a variety of ways of transforming data with an intra
1009 character set mapping that serve a variety of purposes. Sorting was
1010 discussed in the previous section and a few of the other more popular
1011 mapping techniques are discussed next.
1012
1013 URL decoding and encoding
1014 Note that some URLs have hexadecimal ASCII code points in them in an
1015 attempt to overcome character or protocol limitation issues. For
1016 example the tilde character is not on every keyboard hence a URL of the
1017 form:
1018
1019 http://www.pvhp.com/~pvhp/
1020
1021 may also be expressed as either of:
1022
1023 http://www.pvhp.com/%7Epvhp/
1024
1025 http://www.pvhp.com/%7epvhp/
1026
1027 where 7E is the hexadecimal ASCII code point for '~'. Here is an
1028 example of decoding such a URL under CCSID 1047:
1029
1030 $url = 'http://www.pvhp.com/%7Epvhp/';
1031 # this array assumes code page 1047
1032 my @a2e_1047 = (
1033 0, 1, 2, 3, 55, 45, 46, 47, 22, 5, 21, 11, 12, 13, 14, 15,
1034 16, 17, 18, 19, 60, 61, 50, 38, 24, 25, 63, 39, 28, 29, 30, 31,
1035 64, 90,127,123, 91,108, 80,125, 77, 93, 92, 78,107, 96, 75, 97,
1036 240,241,242,243,244,245,246,247,248,249,122, 94, 76,126,110,111,
1037 124,193,194,195,196,197,198,199,200,201,209,210,211,212,213,214,
1038 215,216,217,226,227,228,229,230,231,232,233,173,224,189, 95,109,
1039 121,129,130,131,132,133,134,135,136,137,145,146,147,148,149,150,
1040 151,152,153,162,163,164,165,166,167,168,169,192, 79,208,161, 7,
1041 32, 33, 34, 35, 36, 37, 6, 23, 40, 41, 42, 43, 44, 9, 10, 27,
1042 48, 49, 26, 51, 52, 53, 54, 8, 56, 57, 58, 59, 4, 20, 62,255,
1043 65,170, 74,177,159,178,106,181,187,180,154,138,176,202,175,188,
1044 144,143,234,250,190,160,182,179,157,218,155,139,183,184,185,171,
1045 100,101, 98,102, 99,103,158,104,116,113,114,115,120,117,118,119,
1046 172,105,237,238,235,239,236,191,128,253,254,251,252,186,174, 89,
1047 68, 69, 66, 70, 67, 71,156, 72, 84, 81, 82, 83, 88, 85, 86, 87,
1048 140, 73,205,206,203,207,204,225,112,221,222,219,220,141,142,223
1049 );
1050 $url =~ s/%([0-9a-fA-F]{2})/pack("c",$a2e_1047[hex($1)])/ge;
1051
1052 Conversely, here is a partial solution for the task of encoding such a
1053 URL under the 1047 code page:
1054
1055 $url = 'http://www.pvhp.com/~pvhp/';
1056 # this array assumes code page 1047
1057 my @e2a_1047 = (
1058 0, 1, 2, 3,156, 9,134,127,151,141,142, 11, 12, 13, 14, 15,
1059 16, 17, 18, 19,157, 10, 8,135, 24, 25,146,143, 28, 29, 30, 31,
1060 128,129,130,131,132,133, 23, 27,136,137,138,139,140, 5, 6, 7,
1061 144,145, 22,147,148,149,150, 4,152,153,154,155, 20, 21,158, 26,
1062 32,160,226,228,224,225,227,229,231,241,162, 46, 60, 40, 43,124,
1063 38,233,234,235,232,237,238,239,236,223, 33, 36, 42, 41, 59, 94,
1064 45, 47,194,196,192,193,195,197,199,209,166, 44, 37, 95, 62, 63,
1065 248,201,202,203,200,205,206,207,204, 96, 58, 35, 64, 39, 61, 34,
1066 216, 97, 98, 99,100,101,102,103,104,105,171,187,240,253,254,177,
1067 176,106,107,108,109,110,111,112,113,114,170,186,230,184,198,164,
1068 181,126,115,116,117,118,119,120,121,122,161,191,208, 91,222,174,
1069 172,163,165,183,169,167,182,188,189,190,221,168,175, 93,180,215,
1070 123, 65, 66, 67, 68, 69, 70, 71, 72, 73,173,244,246,242,243,245,
1071 125, 74, 75, 76, 77, 78, 79, 80, 81, 82,185,251,252,249,250,255,
1072 92,247, 83, 84, 85, 86, 87, 88, 89, 90,178,212,214,210,211,213,
1073 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,179,219,220,217,218,159
1074 );
1075 # The following regular expression does not address the
1076 # mappings for: ('.' => '%2E', '/' => '%2F', ':' => '%3A')
1077 $url =~ s/([\t "#%&\(\),;<=>\?\@\[\\\]^`{|}~])/sprintf("%%%02X",$e2a_1047[ord($1)])/ge;
1078
1079 where a more complete solution would split the URL into components and
1080 apply a full s/// substitution only to the appropriate parts.
1081
1082 In the remaining examples a @e2a or @a2e array may be employed but the
1083 assignment will not be shown explicitly. For code page 1047 you could
1084 use the @a2e_1047 or @e2a_1047 arrays just shown.
1085
1086 uu encoding and decoding
1087 The "u" template to pack() or unpack() will render EBCDIC data in
1088 EBCDIC characters equivalent to their ASCII counterparts. For example,
1089 the following will print "Yes indeed\n" on either an ASCII or EBCDIC
1090 computer:
1091
1092 $all_byte_chrs = '';
1093 for (0..255) { $all_byte_chrs .= chr($_); }
1094 $uuencode_byte_chrs = pack('u', $all_byte_chrs);
1095 ($uu = <<'ENDOFHEREDOC') =~ s/^\s*//gm;
1096 M``$"`P0%!@<("0H+#`T.#Q`1$A,4%187&!D:&QP='A\@(2(C)"4F)R@I*BLL
1097 M+2XO,#$R,S0U-C<X.3H[/#T^/T!!0D-$149'2$E*2TQ-3D]045)35%565UA9
1098 M6EM<75Y?8&%B8V1E9F=H:6IK;&UN;W!Q<G-T=79W>'EZ>WQ]?G^`@8*#A(6&
1099 MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S
1100 MM+6VM[BYNKN\O;Z_P,'"P\3%QL?(R<K+S,W.S]#1TM/4U=;7V-G:V]S=WM_@
1101 ?X>+CY.7FY^CIZNOL[>[O\/'R\_3U]O?X^?K[_/W^_P``
1102 ENDOFHEREDOC
1103 if ($uuencode_byte_chrs eq $uu) {
1104 print "Yes ";
1105 }
1106 $uudecode_byte_chrs = unpack('u', $uuencode_byte_chrs);
1107 if ($uudecode_byte_chrs eq $all_byte_chrs) {
1108 print "indeed\n";
1109 }
1110
1111 Here is a very spartan uudecoder that will work on EBCDIC provided that
1112 the @e2a array is filled in appropriately:
1113
1114 #!/usr/local/bin/perl
1115 @e2a = ( # this must be filled in
1116 );
1117 $_ = <> until ($mode,$file) = /^begin\s*(\d*)\s*(\S*)/;
1118 open(OUT, "> $file") if $file ne "";
1119 while(<>) {
1120 last if /^end/;
1121 next if /[a-z]/;
1122 next unless int(((($e2a[ord()] - 32 ) & 077) + 2) / 3) ==
1123 int(length() / 4);
1124 print OUT unpack("u", $_);
1125 }
1126 close(OUT);
1127 chmod oct($mode), $file;
1128
1129 Quoted-Printable encoding and decoding
1130 On ASCII encoded platforms it is possible to strip characters outside
1131 of the printable set using:
1132
1133 # This QP encoder works on ASCII only
1134 $qp_string =~ s/([=\x00-\x1F\x80-\xFF])/sprintf("=%02X",ord($1))/ge;
1135
1136 Whereas a QP encoder that works on both ASCII and EBCDIC platforms
1137 would look somewhat like the following (where the EBCDIC branch @e2a
1138 array is omitted for brevity):
1139
1140 if (ord('A') == 65) { # ASCII
1141 $delete = "\x7F"; # ASCII
1142 @e2a = (0 .. 255) # ASCII to ASCII identity map
1143 }
1144 else { # EBCDIC
1145 $delete = "\x07"; # EBCDIC
1146 @e2a = # EBCDIC to ASCII map (as shown above)
1147 }
1148 $qp_string =~
1149 s/([^ !"\#\$%&'()*+,\-.\/0-9:;<>?\@A-Z[\\\]^_`a-z{|}~$delete])/sprintf("=%02X",$e2a[ord($1)])/ge;
1150
1151 (although in production code the substitutions might be done in the
1152 EBCDIC branch with the @e2a array and separately in the ASCII branch
1153 without the expense of the identity map).
1154
1155 Such QP strings can be decoded with:
1156
1157 # This QP decoder is limited to ASCII only
1158 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/ge;
1159 $string =~ s/=[\n\r]+$//;
1160
1161 Whereas a QP decoder that works on both ASCII and EBCDIC platforms
1162 would look somewhat like the following (where the @a2e array is omitted
1163 for brevity):
1164
1165 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr $a2e[hex $1]/ge;
1166 $string =~ s/=[\n\r]+$//;
1167
1168 Caesarian ciphers
1169 The practice of shifting an alphabet one or more characters for
1170 encipherment dates back thousands of years and was explicitly detailed
1171 by Gaius Julius Caesar in his Gallic Wars text. A single alphabet
1172 shift is sometimes referred to as a rotation and the shift amount is
1173 given as a number $n after the string 'rot' or "rot$n". Rot0 and rot26
1174 would designate identity maps on the 26 letter English version of the
1175 Latin alphabet. Rot13 has the interesting property that alternate
1176 subsequent invocations are identity maps (thus rot13 is its own non-
1177 trivial inverse in the group of 26 alphabet rotations). Hence the
1178 following is a rot13 encoder and decoder that will work on ASCII and
1179 EBCDIC platforms:
1180
1181 #!/usr/local/bin/perl
1182
1183 while(<>){
1184 tr/n-za-mN-ZA-M/a-zA-Z/;
1185 print;
1186 }
1187
1188 In one-liner form:
1189
1190 perl -ne 'tr/n-za-mN-ZA-M/a-zA-Z/;print'
1191
1193 To the extent that it is possible to write code that depends on hashing
1194 order there may be differences between hashes as stored on an ASCII
1195 based platform and hashes stored on an EBCDIC based platform. XXX
1196
1198 Internationalization(I18N) and localization(L10N) are supported at
1199 least in principle even on EBCDIC platforms. The details are system
1200 dependent and discussed under the "OS ISSUES" in perlebcdic section
1201 below.
1202
1204 Perl may work with an internal UTF-EBCDIC encoding form for wide
1205 characters on EBCDIC platforms in a manner analogous to the way that it
1206 works with the UTF-8 internal encoding form on ASCII based platforms.
1207
1208 Legacy multi byte EBCDIC code pages XXX.
1209
1211 There may be a few system dependent issues of concern to EBCDIC Perl
1212 programmers.
1213
1214 OS/400
1215 PASE The PASE environment is runtime environment for OS/400 that can
1216 run executables built for PowerPC AIX in OS/400, see perlos400.
1217 PASE is ASCII-based, not EBCDIC-based as the ILE.
1218
1219 IFS access
1220 XXX.
1221
1222 OS/390, z/OS
1223 Perl runs under Unix Systems Services or USS.
1224
1225 chcp chcp is supported as a shell utility for displaying and
1226 changing one's code page. See also chcp.
1227
1228 dataset access
1229 For sequential data set access try:
1230
1231 my @ds_records = `cat //DSNAME`;
1232
1233 or:
1234
1235 my @ds_records = `cat //'HLQ.DSNAME'`;
1236
1237 See also the OS390::Stdio module on CPAN.
1238
1239 OS/390, z/OS iconv
1240 iconv is supported as both a shell utility and a C RTL routine.
1241 See also the iconv(1) and iconv(3) manual pages.
1242
1243 locales On OS/390 or z/OS see locale for information on locales. The
1244 L10N files are in /usr/nls/locale. $Config{d_setlocale} is
1245 'define' on OS/390 or z/OS.
1246
1247 VM/ESA?
1248 XXX.
1249
1250 POSIX-BC?
1251 XXX.
1252
1254 This pod document contains literal Latin 1 characters and may encounter
1255 translation difficulties. In particular one popular nroff
1256 implementation was known to strip accented characters to their
1257 unaccented counterparts while attempting to view this document through
1258 the pod2man program (for example, you may see a plain "y" rather than
1259 one with a diaeresis as in ye). Another nroff truncated the resultant
1260 manpage at the first occurrence of 8 bit characters.
1261
1262 Not all shells will allow multiple "-e" string arguments to perl to be
1263 concatenated together properly as recipes 0, 2, 4, 5, and 6 might seem
1264 to imply.
1265
1267 perllocale, perlfunc, perlunicode, utf8.
1268
1270 <http://anubis.dkuug.dk/i18n/charmaps>
1271
1272 <http://www.unicode.org/>
1273
1274 <http://www.unicode.org/unicode/reports/tr16/>
1275
1276 <http://www.wps.com/projects/codes/> ASCII: American Standard Code for
1277 Information Infiltration Tom Jennings, September 1999.
1278
1279 The Unicode Standard, Version 3.0 The Unicode Consortium, Lisa Moore
1280 ed., ISBN 0-201-61633-5, Addison Wesley Developers Press, February
1281 2000.
1282
1283 CDRA: IBM - Character Data Representation Architecture - Reference and
1284 Registry, IBM SC09-2190-00, December 1996.
1285
1286 "Demystifying Character Sets", Andrea Vine, Multilingual Computing &
1287 Technology, #26 Vol. 10 Issue 4, August/September 1999; ISSN 1523-0309;
1288 Multilingual Computing Inc. Sandpoint ID, USA.
1289
1290 Codes, Ciphers, and Other Cryptic and Clandestine Communication Fred B.
1291 Wrixon, ISBN 1-57912-040-7, Black Dog & Leventhal Publishers, 1998.
1292
1293 http://www.bobbemer.com/P-BIT.HTM <http://www.bobbemer.com/P-BIT.HTM>
1294 IBM - EBCDIC and the P-bit; The biggest Computer Goof Ever Robert
1295 Bemer.
1296
1298 15 April 2001: added UTF-8 and UTF-EBCDIC to main table, pvhp.
1299
1301 Peter Prymmer pvhp@best.com wrote this in 1999 and 2000 with CCSID 0819
1302 and 0037 help from Chris Leach and Andre Pirard A.Pirard@ulg.ac.be as
1303 well as POSIX-BC help from Thomas Dorner Thomas.Dorner@start.de.
1304 Thanks also to Vickie Cooper, Philip Newton, William Raffloer, and Joe
1305 Smith. Trademarks, registered trademarks, service marks and registered
1306 service marks used in this document are the property of their
1307 respective owners.
1308
1309
1310
1311perl v5.12.4 2011-06-07 PERLEBCDIC(1)