1PERLEBCDIC(1) Perl Programmers Reference Guide PERLEBCDIC(1)
2
3
4
6 perlebcdic - Considerations for running Perl on EBCDIC platforms
7
9 An exploration of some of the issues facing Perl programmers on EBCDIC
10 based computers. We do not cover localization, internationalization,
11 or multi-byte character set issues other than some discussion of UTF-8
12 and UTF-EBCDIC.
13
14 Portions that are still incomplete are marked with XXX.
15
16 Perl used to work on EBCDIC machines, but there are now areas of the
17 code where it doesn't. If you want to use Perl on an EBCDIC machine,
18 please let us know by sending mail to perlbug@perl.org
19
21 ASCII
22 The American Standard Code for Information Interchange (ASCII or US-
23 ASCII) is a set of integers running from 0 to 127 (decimal) that imply
24 character interpretation by the display and other systems of computers.
25 The range 0..127 can be covered by setting the bits in a 7-bit binary
26 digit, hence the set is sometimes referred to as "7-bit ASCII". ASCII
27 was described by the American National Standards Institute document
28 ANSI X3.4-1986. It was also described by ISO 646:1991 (with
29 localization for currency symbols). The full ASCII set is given in the
30 table below as the first 128 elements. Languages that can be written
31 adequately with the characters in ASCII include English, Hawaiian,
32 Indonesian, Swahili and some Native American languages.
33
34 There are many character sets that extend the range of integers from
35 0..2**7-1 up to 2**8-1, or 8 bit bytes (octets if you prefer). One
36 common one is the ISO 8859-1 character set.
37
38 ISO 8859
39 The ISO 8859-$n are a collection of character code sets from the
40 International Organization for Standardization (ISO) each of which adds
41 characters to the ASCII set that are typically found in European
42 languages many of which are based on the Roman, or Latin, alphabet.
43
44 Latin 1 (ISO 8859-1)
45 A particular 8-bit extension to ASCII that includes grave and acute
46 accented Latin characters. Languages that can employ ISO 8859-1
47 include all the languages covered by ASCII as well as Afrikaans,
48 Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian,
49 Portuguese, Spanish, and Swedish. Dutch is covered albeit without the
50 ij ligature. French is covered too but without the oe ligature.
51 German can use ISO 8859-1 but must do so without German-style quotation
52 marks. This set is based on Western European extensions to ASCII and
53 is commonly encountered in world wide web work. In IBM character code
54 set identification terminology ISO 8859-1 is also known as CCSID 819
55 (or sometimes 0819 or even 00819).
56
57 EBCDIC
58 The Extended Binary Coded Decimal Interchange Code refers to a large
59 collection of single- and multi-byte coded character sets that are
60 different from ASCII or ISO 8859-1 and are all slightly different from
61 each other; they typically run on host computers. The EBCDIC encodings
62 derive from 8-bit byte extensions of Hollerith punched card encodings.
63 The layout on the cards was such that high bits were set for the upper
64 and lower case alphabet characters [a-z] and [A-Z], but there were gaps
65 within each Latin alphabet range.
66
67 Some IBM EBCDIC character sets may be known by character code set
68 identification numbers (CCSID numbers) or code page numbers.
69
70 Perl can be compiled on platforms that run any of three commonly used
71 EBCDIC character sets, listed below.
72
73 The 13 variant characters
74 Among IBM EBCDIC character code sets there are 13 characters that are
75 often mapped to different integer values. Those characters are known
76 as the 13 "variant" characters and are:
77
78 \ [ ] { } ^ ~ ! # | $ @ `
79
80 When Perl is compiled for a platform, it looks at some of these
81 characters to guess which EBCDIC character set the platform uses, and
82 adapts itself accordingly to that platform. If the platform uses a
83 character set that is not one of the three Perl knows about, Perl will
84 either fail to compile, or mistakenly and silently choose one of the
85 three. They are:
86
87 0037
88 Character code set ID 0037 is a mapping of the ASCII plus Latin-1
89 characters (i.e. ISO 8859-1) to an EBCDIC set. 0037 is used in North
90 American English locales on the OS/400 operating system that runs on
91 AS/400 computers. CCSID 0037 differs from ISO 8859-1 in 237 places, in
92 other words they agree on only 19 code point values.
93
94 1047
95 Character code set ID 1047 is also a mapping of the ASCII plus Latin-1
96 characters (i.e. ISO 8859-1) to an EBCDIC set. 1047 is used under Unix
97 System Services for OS/390 or z/OS, and OpenEdition for VM/ESA. CCSID
98 1047 differs from CCSID 0037 in eight places.
99
100 POSIX-BC
101 The EBCDIC code page in use on Siemens' BS2000 system is distinct from
102 1047 and 0037. It is identified below as the POSIX-BC set.
103
104 Unicode code points versus EBCDIC code points
105 In Unicode terminology a code point is the number assigned to a
106 character: for example, in EBCDIC the character "A" is usually assigned
107 the number 193. In Unicode the character "A" is assigned the number
108 65. This causes a problem with the semantics of the pack/unpack "U",
109 which are supposed to pack Unicode code points to characters and back
110 to numbers. The problem is: which code points to use for code points
111 less than 256? (for 256 and over there's no problem: Unicode code
112 points are used) In EBCDIC, for the low 256 the EBCDIC code points are
113 used. This means that the equivalences
114
115 pack("U", ord($character)) eq $character
116 unpack("U", $character) == ord $character
117
118 will hold. (If Unicode code points were applied consistently over all
119 the possible code points, pack("U",ord("A")) would in EBCDIC equal A
120 with acute or chr(101), and unpack("U", "A") would equal 65, or non-
121 breaking space, not 193, or ord "A".)
122
123 Remaining Perl Unicode problems in EBCDIC
124 · Many of the remaining problems seem to be related to case-
125 insensitive matching
126
127 · The extensions Unicode::Collate and Unicode::Normalized are not
128 supported under EBCDIC, likewise for the encoding pragma.
129
130 Unicode and UTF
131 UTF stands for "Unicode Transformation Format". UTF-8 is an encoding
132 of Unicode into a sequence of 8-bit byte chunks, based on ASCII and
133 Latin-1. The length of a sequence required to represent a Unicode code
134 point depends on the ordinal number of that code point, with larger
135 numbers requiring more bytes. UTF-EBCDIC is like UTF-8, but based on
136 EBCDIC.
137
138 You may see the term "invariant" character or code point. This simply
139 means that the character has the same numeric value when encoded as
140 when not. (Note that this is a very different concept from "The 13
141 variant characters" mentioned above.) For example, the ordinal value
142 of 'A' is 193 in most EBCDIC code pages, and also is 193 when encoded
143 in UTF-EBCDIC. All variant code points occupy at least two bytes when
144 encoded. In UTF-8, the code points corresponding to the lowest 128
145 ordinal numbers (0 - 127: the ASCII characters) are invariant. In UTF-
146 EBCDIC, there are 160 invariant characters. (If you care, the EBCDIC
147 invariants are those characters which have ASCII equivalents, plus
148 those that correspond to the C1 controls (80..9f on ASCII platforms).)
149
150 A string encoded in UTF-EBCDIC may be longer (but never shorter) than
151 one encoded in UTF-8.
152
153 Using Encode
154 Starting from Perl 5.8 you can use the standard new module Encode to
155 translate from EBCDIC to Latin-1 code points. Encode knows about more
156 EBCDIC character sets than Perl can currently be compiled to run on.
157
158 use Encode 'from_to';
159
160 my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );
161
162 # $a is in EBCDIC code points
163 from_to($a, $ebcdic{ord '^'}, 'latin1');
164 # $a is ISO 8859-1 code points
165
166 and from Latin-1 code points to EBCDIC code points
167
168 use Encode 'from_to';
169
170 my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );
171
172 # $a is ISO 8859-1 code points
173 from_to($a, 'latin1', $ebcdic{ord '^'});
174 # $a is in EBCDIC code points
175
176 For doing I/O it is suggested that you use the autotranslating features
177 of PerlIO, see perluniintro.
178
179 Since version 5.8 Perl uses the new PerlIO I/O library. This enables
180 you to use different encodings per IO channel. For example you may use
181
182 use Encode;
183 open($f, ">:encoding(ascii)", "test.ascii");
184 print $f "Hello World!\n";
185 open($f, ">:encoding(cp37)", "test.ebcdic");
186 print $f "Hello World!\n";
187 open($f, ">:encoding(latin1)", "test.latin1");
188 print $f "Hello World!\n";
189 open($f, ">:encoding(utf8)", "test.utf8");
190 print $f "Hello World!\n";
191
192 to get four files containing "Hello World!\n" in ASCII, CP 0037 EBCDIC,
193 ISO 8859-1 (Latin-1) (in this example identical to ASCII since only
194 ASCII characters were printed), and UTF-EBCDIC (in this example
195 identical to normal EBCDIC since only characters that don't differ
196 between EBCDIC and UTF-EBCDIC were printed). See the documentation of
197 Encode::PerlIO for details.
198
199 As the PerlIO layer uses raw IO (bytes) internally, all this totally
200 ignores things like the type of your filesystem (ASCII or EBCDIC).
201
203 The following tables list the ASCII and Latin 1 ordered sets including
204 the subsets: C0 controls (0..31), ASCII graphics (32..7e), delete (7f),
205 C1 controls (80..9f), and Latin-1 (a.k.a. ISO 8859-1) (a0..ff). In the
206 table non-printing control character names as well as the Latin 1
207 extensions to ASCII have been labelled with character names roughly
208 corresponding to The Unicode Standard, Version 3.0 albeit with
209 substitutions such as s/LATIN// and s/VULGAR// in all cases, s/CAPITAL
210 LETTER// in some cases, and s/SMALL LETTER ([A-Z])/\l$1/ in some other
211 cases. The "names" of the controls listed here are the Unicode Version
212 1 names, except for the few that don't have names, in which case the
213 names in the Wikipedia article were used
214 (<http://en.wikipedia.org/wiki/C0_and_C1_control_codes>). The
215 differences between the 0037 and 1047 sets are flagged with ***. The
216 differences between the 1047 and POSIX-BC sets are flagged with ###.
217 All ord() numbers listed are decimal. If you would rather see this
218 table listing octal values then run the table (that is, the pod version
219 of this document since this recipe may not work with a
220 pod2_other_format translation) through:
221
222 recipe 0
223
224 perl -ne 'if(/(.{43})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
225 -e '{printf("%s%-9.03o%-9.03o%-9.03o%.03o\n",$1,$2,$3,$4,$5)}' \
226 perlebcdic.pod
227
228 If you want to retain the UTF-x code points then in script form you
229 might want to write:
230
231 recipe 1
232
233 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
234 while (<FH>) {
235 if (/(.{43})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/)
236 {
237 if ($7 ne '' && $9 ne '') {
238 printf(
239 "%s%-9.03o%-9.03o%-9.03o%-9.03o%-3o.%-5o%-3o.%.03o\n",
240 $1,$2,$3,$4,$5,$6,$7,$8,$9);
241 }
242 elsif ($7 ne '') {
243 printf("%s%-9.03o%-9.03o%-9.03o%-9.03o%-3o.%-5o%.03o\n",
244 $1,$2,$3,$4,$5,$6,$7,$8);
245 }
246 else {
247 printf("%s%-9.03o%-9.03o%-9.03o%-9.03o%-9.03o%.03o\n",
248 $1,$2,$3,$4,$5,$6,$8);
249 }
250 }
251 }
252
253 If you would rather see this table listing hexadecimal values then run
254 the table through:
255
256 recipe 2
257
258 perl -ne 'if(/(.{43})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
259 -e '{printf("%s%-9.02X%-9.02X%-9.02X%.02X\n",$1,$2,$3,$4,$5)}' \
260 perlebcdic.pod
261
262 Or, in order to retain the UTF-x code points in hexadecimal:
263
264 recipe 3
265
266 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
267 while (<FH>) {
268 if (/(.{43})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/)
269 {
270 if ($7 ne '' && $9 ne '') {
271 printf(
272 "%s%-9.02X%-9.02X%-9.02X%-9.02X%-2X.%-6.02X%02X.%02X\n",
273 $1,$2,$3,$4,$5,$6,$7,$8,$9);
274 }
275 elsif ($7 ne '') {
276 printf("%s%-9.02X%-9.02X%-9.02X%-9.02X%-2X.%-6.02X%02X\n",
277 $1,$2,$3,$4,$5,$6,$7,$8);
278 }
279 else {
280 printf("%s%-9.02X%-9.02X%-9.02X%-9.02X%-9.02X%02X\n",
281 $1,$2,$3,$4,$5,$6,$8);
282 }
283 }
284 }
285
286
287 ISO 8859-1 CCSID CCSID CCSID 1047
288 chr CCSID 0819 0037 1047 POSIX-BC UTF-8 UTF-EBCDIC
289 ----------------------------------------------------------------------------------------------
290 <NULL> 0 0 0 0 0 0
291 <START OF HEADING> 1 1 1 1 1 1
292 <START OF TEXT> 2 2 2 2 2 2
293 <END OF TEXT> 3 3 3 3 3 3
294 <END OF TRANSMISSION> 4 55 55 55 4 55
295 <ENQUIRY> 5 45 45 45 5 45
296 <ACKNOWLEDGE> 6 46 46 46 6 46
297 <BELL> 7 47 47 47 7 47
298 <BACKSPACE> 8 22 22 22 8 22
299 <HORIZONTAL TABULATION> 9 5 5 5 9 5
300 <LINE FEED> 10 37 21 21 10 21 ***
301 <VERTICAL TABULATION> 11 11 11 11 11 11
302 <FORM FEED> 12 12 12 12 12 12
303 <CARRIAGE RETURN> 13 13 13 13 13 13
304 <SHIFT OUT> 14 14 14 14 14 14
305 <SHIFT IN> 15 15 15 15 15 15
306 <DATA LINK ESCAPE> 16 16 16 16 16 16
307 <DEVICE CONTROL ONE> 17 17 17 17 17 17
308 <DEVICE CONTROL TWO> 18 18 18 18 18 18
309 <DEVICE CONTROL THREE> 19 19 19 19 19 19
310 <DEVICE CONTROL FOUR> 20 60 60 60 20 60
311 <NEGATIVE ACKNOWLEDGE> 21 61 61 61 21 61
312 <SYNCHRONOUS IDLE> 22 50 50 50 22 50
313 <END OF TRANSMISSION BLOCK> 23 38 38 38 23 38
314 <CANCEL> 24 24 24 24 24 24
315 <END OF MEDIUM> 25 25 25 25 25 25
316 <SUBSTITUTE> 26 63 63 63 26 63
317 <ESCAPE> 27 39 39 39 27 39
318 <FILE SEPARATOR> 28 28 28 28 28 28
319 <GROUP SEPARATOR> 29 29 29 29 29 29
320 <RECORD SEPARATOR> 30 30 30 30 30 30
321 <UNIT SEPARATOR> 31 31 31 31 31 31
322 <SPACE> 32 64 64 64 32 64
323 ! 33 90 90 90 33 90
324 " 34 127 127 127 34 127
325 # 35 123 123 123 35 123
326 $ 36 91 91 91 36 91
327 % 37 108 108 108 37 108
328 & 38 80 80 80 38 80
329 ' 39 125 125 125 39 125
330 ( 40 77 77 77 40 77
331 ) 41 93 93 93 41 93
332 * 42 92 92 92 42 92
333 + 43 78 78 78 43 78
334 , 44 107 107 107 44 107
335 - 45 96 96 96 45 96
336 . 46 75 75 75 46 75
337 / 47 97 97 97 47 97
338 0 48 240 240 240 48 240
339 1 49 241 241 241 49 241
340 2 50 242 242 242 50 242
341 3 51 243 243 243 51 243
342 4 52 244 244 244 52 244
343 5 53 245 245 245 53 245
344 6 54 246 246 246 54 246
345 7 55 247 247 247 55 247
346 8 56 248 248 248 56 248
347 9 57 249 249 249 57 249
348 : 58 122 122 122 58 122
349 ; 59 94 94 94 59 94
350 < 60 76 76 76 60 76
351 = 61 126 126 126 61 126
352 > 62 110 110 110 62 110
353 ? 63 111 111 111 63 111
354 @ 64 124 124 124 64 124
355 A 65 193 193 193 65 193
356 B 66 194 194 194 66 194
357 C 67 195 195 195 67 195
358 D 68 196 196 196 68 196
359 E 69 197 197 197 69 197
360 F 70 198 198 198 70 198
361 G 71 199 199 199 71 199
362 H 72 200 200 200 72 200
363 I 73 201 201 201 73 201
364 J 74 209 209 209 74 209
365 K 75 210 210 210 75 210
366 L 76 211 211 211 76 211
367 M 77 212 212 212 77 212
368 N 78 213 213 213 78 213
369 O 79 214 214 214 79 214
370 P 80 215 215 215 80 215
371 Q 81 216 216 216 81 216
372 R 82 217 217 217 82 217
373 S 83 226 226 226 83 226
374 T 84 227 227 227 84 227
375 U 85 228 228 228 85 228
376 V 86 229 229 229 86 229
377 W 87 230 230 230 87 230
378 X 88 231 231 231 88 231
379 Y 89 232 232 232 89 232
380 Z 90 233 233 233 90 233
381 [ 91 186 173 187 91 173 *** ###
382 \ 92 224 224 188 92 224 ###
383 ] 93 187 189 189 93 189 ***
384 ^ 94 176 95 106 94 95 *** ###
385 _ 95 109 109 109 95 109
386 ` 96 121 121 74 96 121 ###
387 a 97 129 129 129 97 129
388 b 98 130 130 130 98 130
389 c 99 131 131 131 99 131
390 d 100 132 132 132 100 132
391 e 101 133 133 133 101 133
392 f 102 134 134 134 102 134
393 g 103 135 135 135 103 135
394 h 104 136 136 136 104 136
395 i 105 137 137 137 105 137
396 j 106 145 145 145 106 145
397 k 107 146 146 146 107 146
398 l 108 147 147 147 108 147
399 m 109 148 148 148 109 148
400 n 110 149 149 149 110 149
401 o 111 150 150 150 111 150
402 p 112 151 151 151 112 151
403 q 113 152 152 152 113 152
404 r 114 153 153 153 114 153
405 s 115 162 162 162 115 162
406 t 116 163 163 163 116 163
407 u 117 164 164 164 117 164
408 v 118 165 165 165 118 165
409 w 119 166 166 166 119 166
410 x 120 167 167 167 120 167
411 y 121 168 168 168 121 168
412 z 122 169 169 169 122 169
413 { 123 192 192 251 123 192 ###
414 | 124 79 79 79 124 79
415 } 125 208 208 253 125 208 ###
416 ~ 126 161 161 255 126 161 ###
417 <DELETE> 127 7 7 7 127 7
418 <PADDING CHARACTER> 128 32 32 32 194.128 32
419 <HIGH OCTET PRESET> 129 33 33 33 194.129 33
420 <BREAK PERMITTED HERE> 130 34 34 34 194.130 34
421 <NO BREAK HERE> 131 35 35 35 194.131 35
422 <INDEX> 132 36 36 36 194.132 36
423 <NEXT LINE> 133 21 37 37 194.133 37 ***
424 <START OF SELECTED AREA> 134 6 6 6 194.134 6
425 <END OF SELECTED AREA> 135 23 23 23 194.135 23
426 <CHARACTER TABULATION SET> 136 40 40 40 194.136 40
427 <CHARACTER TABULATION WITH JUSTIFICATION> 137 41 41 41 194.137 41
428 <LINE TABULATION SET> 138 42 42 42 194.138 42
429 <PARTIAL LINE FORWARD> 139 43 43 43 194.139 43
430 <PARTIAL LINE BACKWARD> 140 44 44 44 194.140 44
431 <REVERSE LINE FEED> 141 9 9 9 194.141 9
432 <SINGLE SHIFT TWO> 142 10 10 10 194.142 10
433 <SINGLE SHIFT THREE> 143 27 27 27 194.143 27
434 <DEVICE CONTROL STRING> 144 48 48 48 194.144 48
435 <PRIVATE USE ONE> 145 49 49 49 194.145 49
436 <PRIVATE USE TWO> 146 26 26 26 194.146 26
437 <SET TRANSMIT STATE> 147 51 51 51 194.147 51
438 <CANCEL CHARACTER> 148 52 52 52 194.148 52
439 <MESSAGE WAITING> 149 53 53 53 194.149 53
440 <START OF GUARDED AREA> 150 54 54 54 194.150 54
441 <END OF GUARDED AREA> 151 8 8 8 194.151 8
442 <START OF STRING> 152 56 56 56 194.152 56
443 <SINGLE GRAPHIC CHARACTER INTRODUCER> 153 57 57 57 194.153 57
444 <SINGLE CHARACTER INTRODUCER> 154 58 58 58 194.154 58
445 <CONTROL SEQUENCE INTRODUCER> 155 59 59 59 194.155 59
446 <STRING TERMINATOR> 156 4 4 4 194.156 4
447 <OPERATING SYSTEM COMMAND> 157 20 20 20 194.157 20
448 <PRIVACY MESSAGE> 158 62 62 62 194.158 62
449 <APPLICATION PROGRAM COMMAND> 159 255 255 95 194.159 255 ###
450 <NON-BREAKING SPACE> 160 65 65 65 194.160 128.65
451 <INVERTED EXCLAMATION MARK> 161 170 170 170 194.161 128.66
452 <CENT SIGN> 162 74 74 176 194.162 128.67 ###
453 <POUND SIGN> 163 177 177 177 194.163 128.68
454 <CURRENCY SIGN> 164 159 159 159 194.164 128.69
455 <YEN SIGN> 165 178 178 178 194.165 128.70
456 <BROKEN BAR> 166 106 106 208 194.166 128.71 ###
457 <SECTION SIGN> 167 181 181 181 194.167 128.72
458 <DIAERESIS> 168 189 187 121 194.168 128.73 *** ###
459 <COPYRIGHT SIGN> 169 180 180 180 194.169 128.74
460 <FEMININE ORDINAL INDICATOR> 170 154 154 154 194.170 128.81
461 <LEFT POINTING GUILLEMET> 171 138 138 138 194.171 128.82
462 <NOT SIGN> 172 95 176 186 194.172 128.83 *** ###
463 <SOFT HYPHEN> 173 202 202 202 194.173 128.84
464 <REGISTERED TRADE MARK SIGN> 174 175 175 175 194.174 128.85
465 <MACRON> 175 188 188 161 194.175 128.86 ###
466 <DEGREE SIGN> 176 144 144 144 194.176 128.87
467 <PLUS-OR-MINUS SIGN> 177 143 143 143 194.177 128.88
468 <SUPERSCRIPT TWO> 178 234 234 234 194.178 128.89
469 <SUPERSCRIPT THREE> 179 250 250 250 194.179 128.98
470 <ACUTE ACCENT> 180 190 190 190 194.180 128.99
471 <MICRO SIGN> 181 160 160 160 194.181 128.100
472 <PARAGRAPH SIGN> 182 182 182 182 194.182 128.101
473 <MIDDLE DOT> 183 179 179 179 194.183 128.102
474 <CEDILLA> 184 157 157 157 194.184 128.103
475 <SUPERSCRIPT ONE> 185 218 218 218 194.185 128.104
476 <MASC. ORDINAL INDICATOR> 186 155 155 155 194.186 128.105
477 <RIGHT POINTING GUILLEMET> 187 139 139 139 194.187 128.106
478 <FRACTION ONE QUARTER> 188 183 183 183 194.188 128.112
479 <FRACTION ONE HALF> 189 184 184 184 194.189 128.113
480 <FRACTION THREE QUARTERS> 190 185 185 185 194.190 128.114
481 <INVERTED QUESTION MARK> 191 171 171 171 194.191 128.115
482 <A WITH GRAVE> 192 100 100 100 195.128 138.65
483 <A WITH ACUTE> 193 101 101 101 195.129 138.66
484 <A WITH CIRCUMFLEX> 194 98 98 98 195.130 138.67
485 <A WITH TILDE> 195 102 102 102 195.131 138.68
486 <A WITH DIAERESIS> 196 99 99 99 195.132 138.69
487 <A WITH RING ABOVE> 197 103 103 103 195.133 138.70
488 <CAPITAL LIGATURE AE> 198 158 158 158 195.134 138.71
489 <C WITH CEDILLA> 199 104 104 104 195.135 138.72
490 <E WITH GRAVE> 200 116 116 116 195.136 138.73
491 <E WITH ACUTE> 201 113 113 113 195.137 138.74
492 <E WITH CIRCUMFLEX> 202 114 114 114 195.138 138.81
493 <E WITH DIAERESIS> 203 115 115 115 195.139 138.82
494 <I WITH GRAVE> 204 120 120 120 195.140 138.83
495 <I WITH ACUTE> 205 117 117 117 195.141 138.84
496 <I WITH CIRCUMFLEX> 206 118 118 118 195.142 138.85
497 <I WITH DIAERESIS> 207 119 119 119 195.143 138.86
498 <CAPITAL LETTER ETH> 208 172 172 172 195.144 138.87
499 <N WITH TILDE> 209 105 105 105 195.145 138.88
500 <O WITH GRAVE> 210 237 237 237 195.146 138.89
501 <O WITH ACUTE> 211 238 238 238 195.147 138.98
502 <O WITH CIRCUMFLEX> 212 235 235 235 195.148 138.99
503 <O WITH TILDE> 213 239 239 239 195.149 138.100
504 <O WITH DIAERESIS> 214 236 236 236 195.150 138.101
505 <MULTIPLICATION SIGN> 215 191 191 191 195.151 138.102
506 <O WITH STROKE> 216 128 128 128 195.152 138.103
507 <U WITH GRAVE> 217 253 253 224 195.153 138.104 ###
508 <U WITH ACUTE> 218 254 254 254 195.154 138.105
509 <U WITH CIRCUMFLEX> 219 251 251 221 195.155 138.106 ###
510 <U WITH DIAERESIS> 220 252 252 252 195.156 138.112
511 <Y WITH ACUTE> 221 173 186 173 195.157 138.113 *** ###
512 <CAPITAL LETTER THORN> 222 174 174 174 195.158 138.114
513 <SMALL LETTER SHARP S> 223 89 89 89 195.159 138.115
514 <a WITH GRAVE> 224 68 68 68 195.160 139.65
515 <a WITH ACUTE> 225 69 69 69 195.161 139.66
516 <a WITH CIRCUMFLEX> 226 66 66 66 195.162 139.67
517 <a WITH TILDE> 227 70 70 70 195.163 139.68
518 <a WITH DIAERESIS> 228 67 67 67 195.164 139.69
519 <a WITH RING ABOVE> 229 71 71 71 195.165 139.70
520 <SMALL LIGATURE ae> 230 156 156 156 195.166 139.71
521 <c WITH CEDILLA> 231 72 72 72 195.167 139.72
522 <e WITH GRAVE> 232 84 84 84 195.168 139.73
523 <e WITH ACUTE> 233 81 81 81 195.169 139.74
524 <e WITH CIRCUMFLEX> 234 82 82 82 195.170 139.81
525 <e WITH DIAERESIS> 235 83 83 83 195.171 139.82
526 <i WITH GRAVE> 236 88 88 88 195.172 139.83
527 <i WITH ACUTE> 237 85 85 85 195.173 139.84
528 <i WITH CIRCUMFLEX> 238 86 86 86 195.174 139.85
529 <i WITH DIAERESIS> 239 87 87 87 195.175 139.86
530 <SMALL LETTER eth> 240 140 140 140 195.176 139.87
531 <n WITH TILDE> 241 73 73 73 195.177 139.88
532 <o WITH GRAVE> 242 205 205 205 195.178 139.89
533 <o WITH ACUTE> 243 206 206 206 195.179 139.98
534 <o WITH CIRCUMFLEX> 244 203 203 203 195.180 139.99
535 <o WITH TILDE> 245 207 207 207 195.181 139.100
536 <o WITH DIAERESIS> 246 204 204 204 195.182 139.101
537 <DIVISION SIGN> 247 225 225 225 195.183 139.102
538 <o WITH STROKE> 248 112 112 112 195.184 139.103
539 <u WITH GRAVE> 249 221 221 192 195.185 139.104 ###
540 <u WITH ACUTE> 250 222 222 222 195.186 139.105
541 <u WITH CIRCUMFLEX> 251 219 219 219 195.187 139.106
542 <u WITH DIAERESIS> 252 220 220 220 195.188 139.112
543 <y WITH ACUTE> 253 141 141 141 195.189 139.113
544 <SMALL LETTER thorn> 254 142 142 142 195.190 139.114
545 <y WITH DIAERESIS> 255 223 223 223 195.191 139.115
546
547 If you would rather see the above table in CCSID 0037 order rather than
548 ASCII + Latin-1 order then run the table through:
549
550 recipe 4
551
552 perl \
553 -ne 'if(/.{43}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
554 -e '{push(@l,$_)}' \
555 -e 'END{print map{$_->[0]}' \
556 -e ' sort{$a->[1] <=> $b->[1]}' \
557 -e ' map{[$_,substr($_,52,3)]}@l;}' perlebcdic.pod
558
559 If you would rather see it in CCSID 1047 order then change the number
560 52 in the last line to 61, like this:
561
562 recipe 5
563
564 perl \
565 -ne 'if(/.{43}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
566 -e '{push(@l,$_)}' \
567 -e 'END{print map{$_->[0]}' \
568 -e ' sort{$a->[1] <=> $b->[1]}' \
569 -e ' map{[$_,substr($_,61,3)]}@l;}' perlebcdic.pod
570
571 If you would rather see it in POSIX-BC order then change the number 61
572 in the last line to 70, like this:
573
574 recipe 6
575
576 perl \
577 -ne 'if(/.{43}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
578 -e '{push(@l,$_)}' \
579 -e 'END{print map{$_->[0]}' \
580 -e ' sort{$a->[1] <=> $b->[1]}' \
581 -e ' map{[$_,substr($_,70,3)]}@l;}' perlebcdic.pod
582
584 To determine the character set you are running under from perl one
585 could use the return value of ord() or chr() to test one or more
586 character values. For example:
587
588 $is_ascii = "A" eq chr(65);
589 $is_ebcdic = "A" eq chr(193);
590
591 Also, "\t" is a "HORIZONTAL TABULATION" character so that:
592
593 $is_ascii = ord("\t") == 9;
594 $is_ebcdic = ord("\t") == 5;
595
596 To distinguish EBCDIC code pages try looking at one or more of the
597 characters that differ between them. For example:
598
599 $is_ebcdic_37 = "\n" eq chr(37);
600 $is_ebcdic_1047 = "\n" eq chr(21);
601
602 Or better still choose a character that is uniquely encoded in any of
603 the code sets, e.g.:
604
605 $is_ascii = ord('[') == 91;
606 $is_ebcdic_37 = ord('[') == 186;
607 $is_ebcdic_1047 = ord('[') == 173;
608 $is_ebcdic_POSIX_BC = ord('[') == 187;
609
610 However, it would be unwise to write tests such as:
611
612 $is_ascii = "\r" ne chr(13); # WRONG
613 $is_ascii = "\n" ne chr(10); # ILL ADVISED
614
615 Obviously the first of these will fail to distinguish most ASCII
616 platforms from either a CCSID 0037, a 1047, or a POSIX-BC EBCDIC
617 platform since "\r" eq chr(13) under all of those coded character sets.
618 But note too that because "\n" is chr(13) and "\r" is chr(10) on the
619 Macintosh (which is an ASCII platform) the second $is_ascii test will
620 lead to trouble there.
621
622 To determine whether or not perl was built under an EBCDIC code page
623 you can use the Config module like so:
624
625 use Config;
626 $is_ebcdic = $Config{'ebcdic'} eq 'define';
627
629 tr///
630 In order to convert a string of characters from one character set to
631 another a simple list of numbers, such as in the right columns in the
632 above table, along with perl's tr/// operator is all that is needed.
633 The data in the table are in ASCII/Latin1 order, hence the EBCDIC
634 columns provide easy-to-use ASCII/Latin1 to EBCDIC operations that are
635 also easily reversed.
636
637 For example, to convert ASCII/Latin1 to code page 037 take the output
638 of the second numbers column from the output of recipe 2 (modified to
639 add '\' characters) and use it in tr/// like so:
640
641 $cp_037 =
642 '\x00\x01\x02\x03\x37\x2D\x2E\x2F\x16\x05\x25\x0B\x0C\x0D\x0E\x0F' .
643 '\x10\x11\x12\x13\x3C\x3D\x32\x26\x18\x19\x3F\x27\x1C\x1D\x1E\x1F' .
644 '\x40\x5A\x7F\x7B\x5B\x6C\x50\x7D\x4D\x5D\x5C\x4E\x6B\x60\x4B\x61' .
645 '\xF0\xF1\xF2\xF3\xF4\xF5\xF6\xF7\xF8\xF9\x7A\x5E\x4C\x7E\x6E\x6F' .
646 '\x7C\xC1\xC2\xC3\xC4\xC5\xC6\xC7\xC8\xC9\xD1\xD2\xD3\xD4\xD5\xD6' .
647 '\xD7\xD8\xD9\xE2\xE3\xE4\xE5\xE6\xE7\xE8\xE9\xBA\xE0\xBB\xB0\x6D' .
648 '\x79\x81\x82\x83\x84\x85\x86\x87\x88\x89\x91\x92\x93\x94\x95\x96' .
649 '\x97\x98\x99\xA2\xA3\xA4\xA5\xA6\xA7\xA8\xA9\xC0\x4F\xD0\xA1\x07' .
650 '\x20\x21\x22\x23\x24\x15\x06\x17\x28\x29\x2A\x2B\x2C\x09\x0A\x1B' .
651 '\x30\x31\x1A\x33\x34\x35\x36\x08\x38\x39\x3A\x3B\x04\x14\x3E\xFF' .
652 '\x41\xAA\x4A\xB1\x9F\xB2\x6A\xB5\xBD\xB4\x9A\x8A\x5F\xCA\xAF\xBC' .
653 '\x90\x8F\xEA\xFA\xBE\xA0\xB6\xB3\x9D\xDA\x9B\x8B\xB7\xB8\xB9\xAB' .
654 '\x64\x65\x62\x66\x63\x67\x9E\x68\x74\x71\x72\x73\x78\x75\x76\x77' .
655 '\xAC\x69\xED\xEE\xEB\xEF\xEC\xBF\x80\xFD\xFE\xFB\xFC\xAD\xAE\x59' .
656 '\x44\x45\x42\x46\x43\x47\x9C\x48\x54\x51\x52\x53\x58\x55\x56\x57' .
657 '\x8C\x49\xCD\xCE\xCB\xCF\xCC\xE1\x70\xDD\xDE\xDB\xDC\x8D\x8E\xDF';
658
659 my $ebcdic_string = $ascii_string;
660 eval '$ebcdic_string =~ tr/\000-\377/' . $cp_037 . '/';
661
662 To convert from EBCDIC 037 to ASCII just reverse the order of the tr///
663 arguments like so:
664
665 my $ascii_string = $ebcdic_string;
666 eval '$ascii_string =~ tr/' . $cp_037 . '/\000-\377/';
667
668 Similarly one could take the output of the third numbers column from
669 recipe 2 to obtain a $cp_1047 table. The fourth numbers column of the
670 output from recipe 2 could provide a $cp_posix_bc table suitable for
671 transcoding as well.
672
673 If you wanted to see the inverse tables, you would first have to sort
674 on the desired numbers column as in recipes 4, 5 or 6, then take the
675 output of the first numbers column.
676
677 iconv
678 XPG operability often implies the presence of an iconv utility
679 available from the shell or from the C library. Consult your system's
680 documentation for information on iconv.
681
682 On OS/390 or z/OS see the iconv(1) manpage. One way to invoke the
683 iconv shell utility from within perl would be to:
684
685 # OS/390 or z/OS example
686 $ascii_data = `echo '$ebcdic_data'| iconv -f IBM-1047 -t ISO8859-1`
687
688 or the inverse map:
689
690 # OS/390 or z/OS example
691 $ebcdic_data = `echo '$ascii_data'| iconv -f ISO8859-1 -t IBM-1047`
692
693 For other perl-based conversion options see the Convert::* modules on
694 CPAN.
695
696 C RTL
697 The OS/390 and z/OS C run-time libraries provide _atoe() and _etoa()
698 functions.
699
701 The ".." range operator treats certain character ranges with care on
702 EBCDIC platforms. For example the following array will have twenty six
703 elements on either an EBCDIC platform or an ASCII platform:
704
705 @alphabet = ('A'..'Z'); # $#alphabet == 25
706
707 The bitwise operators such as & ^ | may return different results when
708 operating on string or character data in a perl program running on an
709 EBCDIC platform than when run on an ASCII platform. Here is an example
710 adapted from the one in perlop:
711
712 # EBCDIC-based examples
713 print "j p \n" ^ " a h"; # prints "JAPH\n"
714 print "JA" | " ph\n"; # prints "japh\n"
715 print "JAPH\nJunk" & "\277\277\277\277\277"; # prints "japh\n";
716 print 'p N$' ^ " E<H\n"; # prints "Perl\n";
717
718 An interesting property of the 32 C0 control characters in the ASCII
719 table is that they can "literally" be constructed as control characters
720 in perl, e.g. "(chr(0)" eq "\c@")> "(chr(1)" eq "\cA")>, and so on.
721 Perl on EBCDIC platforms has been ported to take "\c@" to chr(0) and
722 "\cA" to chr(1), etc. as well, but the thirty three characters that
723 result depend on which code page you are using. The table below uses
724 the standard acronyms for the controls. The POSIX-BC and 1047 sets are
725 identical throughout this range and differ from the 0037 set at only
726 one spot (21 decimal). Note that the "LINE FEED" character may be
727 generated by "\cJ" on ASCII platforms but by "\cU" on 1047 or POSIX-BC
728 platforms and cannot be generated as a "\c.letter." control character
729 on 0037 platforms. Note also that "\c\" cannot be the final element in
730 a string or regex, as it will absorb the terminator. But "\c\X" is a
731 "FILE SEPARATOR" concatenated with X for all X.
732
733 chr ord 8859-1 0037 1047 && POSIX-BC
734 -----------------------------------------------------------------------
735 \c? 127 <DEL> " "
736 \c@ 0 <NUL> <NUL> <NUL>
737 \cA 1 <SOH> <SOH> <SOH>
738 \cB 2 <STX> <STX> <STX>
739 \cC 3 <ETX> <ETX> <ETX>
740 \cD 4 <EOT> <ST> <ST>
741 \cE 5 <ENQ> <HT> <HT>
742 \cF 6 <ACK> <SSA> <SSA>
743 \cG 7 <BEL> <DEL> <DEL>
744 \cH 8 <BS> <EPA> <EPA>
745 \cI 9 <HT> <RI> <RI>
746 \cJ 10 <LF> <SS2> <SS2>
747 \cK 11 <VT> <VT> <VT>
748 \cL 12 <FF> <FF> <FF>
749 \cM 13 <CR> <CR> <CR>
750 \cN 14 <SO> <SO> <SO>
751 \cO 15 <SI> <SI> <SI>
752 \cP 16 <DLE> <DLE> <DLE>
753 \cQ 17 <DC1> <DC1> <DC1>
754 \cR 18 <DC2> <DC2> <DC2>
755 \cS 19 <DC3> <DC3> <DC3>
756 \cT 20 <DC4> <OSC> <OSC>
757 \cU 21 <NAK> <NEL> <LF> ***
758 \cV 22 <SYN> <BS> <BS>
759 \cW 23 <ETB> <ESA> <ESA>
760 \cX 24 <CAN> <CAN> <CAN>
761 \cY 25 <EOM> <EOM> <EOM>
762 \cZ 26 <SUB> <PU2> <PU2>
763 \c[ 27 <ESC> <SS3> <SS3>
764 \c\X 28 <FS>X <FS>X <FS>X
765 \c] 29 <GS> <GS> <GS>
766 \c^ 30 <RS> <RS> <RS>
767 \c_ 31 <US> <US> <US>
768
770 chr() chr() must be given an EBCDIC code number argument to yield a
771 desired character return value on an EBCDIC platform. For
772 example:
773
774 $CAPITAL_LETTER_A = chr(193);
775
776 ord() ord() will return EBCDIC code number values on an EBCDIC
777 platform. For example:
778
779 $the_number_193 = ord("A");
780
781 pack() The c and C templates for pack() are dependent upon character
782 set encoding. Examples of usage on EBCDIC include:
783
784 $foo = pack("CCCC",193,194,195,196);
785 # $foo eq "ABCD"
786 $foo = pack("C4",193,194,195,196);
787 # same thing
788
789 $foo = pack("ccxxcc",193,194,195,196);
790 # $foo eq "AB\0\0CD"
791
792 print() One must be careful with scalars and strings that are passed to
793 print that contain ASCII encodings. One common place for this
794 to occur is in the output of the MIME type header for CGI
795 script writing. For example, many perl programming guides
796 recommend something similar to:
797
798 print "Content-type:\ttext/html\015\012\015\012";
799 # this may be wrong on EBCDIC
800
801 Under the IBM OS/390 USS Web Server or WebSphere on z/OS for
802 example you should instead write that as:
803
804 print "Content-type:\ttext/html\r\n\r\n"; # OK for DGW et al
805
806 That is because the translation from EBCDIC to ASCII is done by
807 the web server in this case (such code will not be appropriate
808 for the Macintosh however). Consult your web server's
809 documentation for further details.
810
811 printf()
812 The formats that can convert characters to numbers and vice
813 versa will be different from their ASCII counterparts when
814 executed on an EBCDIC platform. Examples include:
815
816 printf("%c%c%c",193,194,195); # prints ABC
817
818 sort() EBCDIC sort results may differ from ASCII sort results
819 especially for mixed case strings. This is discussed in more
820 detail below.
821
822 sprintf()
823 See the discussion of printf() above. An example of the use of
824 sprintf would be:
825
826 $CAPITAL_LETTER_A = sprintf("%c",193);
827
828 unpack()
829 See the discussion of pack() above.
830
832 As of perl 5.005_03 the letter range regular expressions such as [A-Z]
833 and [a-z] have been especially coded to not pick up gap characters.
834 For example, characters such as o "o WITH CIRCUMFLEX" that lie between
835 I and J would not be matched by the regular expression range "/[H-K]/".
836 This works in the other direction, too, if either of the range end
837 points is explicitly numeric: "[\x89-\x91]" will match "\x8e", even
838 though "\x89" is "i" and "\x91 " is "j", and "\x8e" is a gap character
839 from the alphabetic viewpoint.
840
841 If you do want to match the alphabet gap characters in a single octet
842 regular expression try matching the hex or octal code such as "/\313/"
843 on EBCDIC or "/\364/" on ASCII platforms to have your regular
844 expression match "o WITH CIRCUMFLEX".
845
846 Another construct to be wary of is the inappropriate use of hex or
847 octal constants in regular expressions. Consider the following set of
848 subs:
849
850 sub is_c0 {
851 my $char = substr(shift,0,1);
852 $char =~ /[\000-\037]/;
853 }
854
855 sub is_print_ascii {
856 my $char = substr(shift,0,1);
857 $char =~ /[\040-\176]/;
858 }
859
860 sub is_delete {
861 my $char = substr(shift,0,1);
862 $char eq "\177";
863 }
864
865 sub is_c1 {
866 my $char = substr(shift,0,1);
867 $char =~ /[\200-\237]/;
868 }
869
870 sub is_latin_1 {
871 my $char = substr(shift,0,1);
872 $char =~ /[\240-\377]/;
873 }
874
875 The above would be adequate if the concern was only with numeric code
876 points. However, the concern may be with characters rather than code
877 points and on an EBCDIC platform it may be desirable for constructs
878 such as "if (is_print_ascii("A")) {print "A is a printable
879 character\n";}" to print out the expected message. One way to
880 represent the above collection of character classification subs that is
881 capable of working across the four coded character sets discussed in
882 this document is as follows:
883
884 sub Is_c0 {
885 my $char = substr(shift,0,1);
886 if (ord('^')==94) { # ascii
887 return $char =~ /[\000-\037]/;
888 }
889 if (ord('^')==176) { # 0037
890 return $char =~ /[\000-\003\067\055-\057\026\005\045\013-\023\074\075\062\046\030\031\077\047\034-\037]/;
891 }
892 if (ord('^')==95 || ord('^')==106) { # 1047 || posix-bc
893 return $char =~ /[\000-\003\067\055-\057\026\005\025\013-\023\074\075\062\046\030\031\077\047\034-\037]/;
894 }
895 }
896
897 sub Is_print_ascii {
898 my $char = substr(shift,0,1);
899 $char =~ /[ !"\#\$%&'()*+,\-.\/0-9:;<=>?\@A-Z[\\\]^_`a-z{|}~]/;
900 }
901
902 sub Is_delete {
903 my $char = substr(shift,0,1);
904 if (ord('^')==94) { # ascii
905 return $char eq "\177";
906 }
907 else { # ebcdic
908 return $char eq "\007";
909 }
910 }
911
912 sub Is_c1 {
913 my $char = substr(shift,0,1);
914 if (ord('^')==94) { # ascii
915 return $char =~ /[\200-\237]/;
916 }
917 if (ord('^')==176) { # 0037
918 return $char =~ /[\040-\044\025\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\377]/;
919 }
920 if (ord('^')==95) { # 1047
921 return $char =~ /[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\377]/;
922 }
923 if (ord('^')==106) { # posix-bc
924 return $char =~
925 /[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\137]/;
926 }
927 }
928
929 sub Is_latin_1 {
930 my $char = substr(shift,0,1);
931 if (ord('^')==94) { # ascii
932 return $char =~ /[\240-\377]/;
933 }
934 if (ord('^')==176) { # 0037
935 return $char =~
936 /[\101\252\112\261\237\262\152\265\275\264\232\212\137\312\257\274\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\375\376\373\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]/;
937 }
938 if (ord('^')==95) { # 1047
939 return $char =~
940 /[\101\252\112\261\237\262\152\265\273\264\232\212\260\312\257\274\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\375\376\373\374\272\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]/;
941 }
942 if (ord('^')==106) { # posix-bc
943 return $char =~
944 /[\101\252\260\261\237\262\320\265\171\264\232\212\272\312\257\241\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\340\376\335\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\300\336\333\334\215\216\337]/;
945 }
946 }
947
948 Note however that only the "Is_ascii_print()" sub is really independent
949 of coded character set. Another way to write "Is_latin_1()" would be
950 to use the characters in the range explicitly:
951
952 sub Is_latin_1 {
953 my $char = substr(shift,0,1);
954 $char =~ /[A AXAXAXAXAXAXAXAXAXAXAXAXAAXAXAXAXAXAXAXAXAXAXAXAXAXAXAXAXAXAXA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~ A~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~A~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~X]/;
955 }
956
957 Although that form may run into trouble in network transit (due to the
958 presence of 8 bit characters) or on non ISO-Latin character sets.
959
961 Most socket programming assumes ASCII character encodings in network
962 byte order. Exceptions can include CGI script writing under a host web
963 server where the server may take care of translation for you. Most
964 host web servers convert EBCDIC data to ISO-8859-1 or Unicode on
965 output.
966
968 One big difference between ASCII-based character sets and EBCDIC ones
969 are the relative positions of upper and lower case letters and the
970 letters compared to the digits. If sorted on an ASCII-based platform
971 the two-letter abbreviation for a physician comes before the two letter
972 abbreviation for drive; that is:
973
974 @sorted = sort(qw(Dr. dr.)); # @sorted holds ('Dr.','dr.') on ASCII,
975 # but ('dr.','Dr.') on EBCDIC
976
977 The property of lowercase before uppercase letters in EBCDIC is even
978 carried to the Latin 1 EBCDIC pages such as 0037 and 1047. An example
979 would be that Ee "E WITH DIAERESIS" (203) comes before ee "e WITH
980 DIAERESIS" (235) on an ASCII platform, but the latter (83) comes before
981 the former (115) on an EBCDIC platform. (Astute readers will note that
982 the uppercase version of ss "SMALL LETTER SHARP S" is simply "SS" and
983 that the upper case version of ye "y WITH DIAERESIS" is not in the
984 0..255 range but it is at U+x0178 in Unicode, or "\x{178}" in a Unicode
985 enabled Perl).
986
987 The sort order will cause differences between results obtained on ASCII
988 platforms versus EBCDIC platforms. What follows are some suggestions
989 on how to deal with these differences.
990
991 Ignore ASCII vs. EBCDIC sort differences.
992 This is the least computationally expensive strategy. It may require
993 some user education.
994
995 MONO CASE then sort data.
996 In order to minimize the expense of mono casing mixed-case text, try to
997 "tr///" towards the character set case most employed within the data.
998 If the data are primarily UPPERCASE non Latin 1 then apply
999 tr/[a-z]/[A-Z]/ then sort(). If the data are primarily lowercase non
1000 Latin 1 then apply tr/[A-Z]/[a-z]/ before sorting. If the data are
1001 primarily UPPERCASE and include Latin-1 characters then apply:
1002
1003 tr/[a-z]/[A-Z]/;
1004 tr/[A~ A~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~A~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~X]/[A~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~XA~X/;
1005 s/A~X/SS/g;
1006
1007 then sort(). Do note however that such Latin-1 manipulation does not
1008 address the ye "y WITH DIAERESIS" character that will remain at code
1009 point 255 on ASCII platforms, but 223 on most EBCDIC platforms where it
1010 will sort to a place less than the EBCDIC numerals. With a Unicode-
1011 enabled Perl you might try:
1012
1013 tr/^?/\x{178}/;
1014
1015 The strategy of mono casing data before sorting does not preserve the
1016 case of the data and may not be acceptable for that reason.
1017
1018 Convert, sort data, then re convert.
1019 This is the most expensive proposition that does not employ a network
1020 connection.
1021
1022 Perform sorting on one type of platform only.
1023 This strategy can employ a network connection. As such it would be
1024 computationally expensive.
1025
1027 There are a variety of ways of transforming data with an intra
1028 character set mapping that serve a variety of purposes. Sorting was
1029 discussed in the previous section and a few of the other more popular
1030 mapping techniques are discussed next.
1031
1032 URL decoding and encoding
1033 Note that some URLs have hexadecimal ASCII code points in them in an
1034 attempt to overcome character or protocol limitation issues. For
1035 example the tilde character is not on every keyboard hence a URL of the
1036 form:
1037
1038 http://www.pvhp.com/~pvhp/
1039
1040 may also be expressed as either of:
1041
1042 http://www.pvhp.com/%7Epvhp/
1043
1044 http://www.pvhp.com/%7epvhp/
1045
1046 where 7E is the hexadecimal ASCII code point for '~'. Here is an
1047 example of decoding such a URL under CCSID 1047:
1048
1049 $url = 'http://www.pvhp.com/%7Epvhp/';
1050 # this array assumes code page 1047
1051 my @a2e_1047 = (
1052 0, 1, 2, 3, 55, 45, 46, 47, 22, 5, 21, 11, 12, 13, 14, 15,
1053 16, 17, 18, 19, 60, 61, 50, 38, 24, 25, 63, 39, 28, 29, 30, 31,
1054 64, 90,127,123, 91,108, 80,125, 77, 93, 92, 78,107, 96, 75, 97,
1055 240,241,242,243,244,245,246,247,248,249,122, 94, 76,126,110,111,
1056 124,193,194,195,196,197,198,199,200,201,209,210,211,212,213,214,
1057 215,216,217,226,227,228,229,230,231,232,233,173,224,189, 95,109,
1058 121,129,130,131,132,133,134,135,136,137,145,146,147,148,149,150,
1059 151,152,153,162,163,164,165,166,167,168,169,192, 79,208,161, 7,
1060 32, 33, 34, 35, 36, 37, 6, 23, 40, 41, 42, 43, 44, 9, 10, 27,
1061 48, 49, 26, 51, 52, 53, 54, 8, 56, 57, 58, 59, 4, 20, 62,255,
1062 65,170, 74,177,159,178,106,181,187,180,154,138,176,202,175,188,
1063 144,143,234,250,190,160,182,179,157,218,155,139,183,184,185,171,
1064 100,101, 98,102, 99,103,158,104,116,113,114,115,120,117,118,119,
1065 172,105,237,238,235,239,236,191,128,253,254,251,252,186,174, 89,
1066 68, 69, 66, 70, 67, 71,156, 72, 84, 81, 82, 83, 88, 85, 86, 87,
1067 140, 73,205,206,203,207,204,225,112,221,222,219,220,141,142,223
1068 );
1069 $url =~ s/%([0-9a-fA-F]{2})/pack("c",$a2e_1047[hex($1)])/ge;
1070
1071 Conversely, here is a partial solution for the task of encoding such a
1072 URL under the 1047 code page:
1073
1074 $url = 'http://www.pvhp.com/~pvhp/';
1075 # this array assumes code page 1047
1076 my @e2a_1047 = (
1077 0, 1, 2, 3,156, 9,134,127,151,141,142, 11, 12, 13, 14, 15,
1078 16, 17, 18, 19,157, 10, 8,135, 24, 25,146,143, 28, 29, 30, 31,
1079 128,129,130,131,132,133, 23, 27,136,137,138,139,140, 5, 6, 7,
1080 144,145, 22,147,148,149,150, 4,152,153,154,155, 20, 21,158, 26,
1081 32,160,226,228,224,225,227,229,231,241,162, 46, 60, 40, 43,124,
1082 38,233,234,235,232,237,238,239,236,223, 33, 36, 42, 41, 59, 94,
1083 45, 47,194,196,192,193,195,197,199,209,166, 44, 37, 95, 62, 63,
1084 248,201,202,203,200,205,206,207,204, 96, 58, 35, 64, 39, 61, 34,
1085 216, 97, 98, 99,100,101,102,103,104,105,171,187,240,253,254,177,
1086 176,106,107,108,109,110,111,112,113,114,170,186,230,184,198,164,
1087 181,126,115,116,117,118,119,120,121,122,161,191,208, 91,222,174,
1088 172,163,165,183,169,167,182,188,189,190,221,168,175, 93,180,215,
1089 123, 65, 66, 67, 68, 69, 70, 71, 72, 73,173,244,246,242,243,245,
1090 125, 74, 75, 76, 77, 78, 79, 80, 81, 82,185,251,252,249,250,255,
1091 92,247, 83, 84, 85, 86, 87, 88, 89, 90,178,212,214,210,211,213,
1092 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,179,219,220,217,218,159
1093 );
1094 # The following regular expression does not address the
1095 # mappings for: ('.' => '%2E', '/' => '%2F', ':' => '%3A')
1096 $url =~ s/([\t "#%&\(\),;<=>\?\@\[\\\]^`{|}~])/sprintf("%%%02X",$e2a_1047[ord($1)])/ge;
1097
1098 where a more complete solution would split the URL into components and
1099 apply a full s/// substitution only to the appropriate parts.
1100
1101 In the remaining examples a @e2a or @a2e array may be employed but the
1102 assignment will not be shown explicitly. For code page 1047 you could
1103 use the @a2e_1047 or @e2a_1047 arrays just shown.
1104
1105 uu encoding and decoding
1106 The "u" template to pack() or unpack() will render EBCDIC data in
1107 EBCDIC characters equivalent to their ASCII counterparts. For example,
1108 the following will print "Yes indeed\n" on either an ASCII or EBCDIC
1109 computer:
1110
1111 $all_byte_chrs = '';
1112 for (0..255) { $all_byte_chrs .= chr($_); }
1113 $uuencode_byte_chrs = pack('u', $all_byte_chrs);
1114 ($uu = <<'ENDOFHEREDOC') =~ s/^\s*//gm;
1115 M``$"`P0%!@<("0H+#`T.#Q`1$A,4%187&!D:&QP='A\@(2(C)"4F)R@I*BLL
1116 M+2XO,#$R,S0U-C<X.3H[/#T^/T!!0D-$149'2$E*2TQ-3D]045)35%565UA9
1117 M6EM<75Y?8&%B8V1E9F=H:6IK;&UN;W!Q<G-T=79W>'EZ>WQ]?G^`@8*#A(6&
1118 MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S
1119 MM+6VM[BYNKN\O;Z_P,'"P\3%QL?(R<K+S,W.S]#1TM/4U=;7V-G:V]S=WM_@
1120 ?X>+CY.7FY^CIZNOL[>[O\/'R\_3U]O?X^?K[_/W^_P``
1121 ENDOFHEREDOC
1122 if ($uuencode_byte_chrs eq $uu) {
1123 print "Yes ";
1124 }
1125 $uudecode_byte_chrs = unpack('u', $uuencode_byte_chrs);
1126 if ($uudecode_byte_chrs eq $all_byte_chrs) {
1127 print "indeed\n";
1128 }
1129
1130 Here is a very spartan uudecoder that will work on EBCDIC provided that
1131 the @e2a array is filled in appropriately:
1132
1133 #!/usr/local/bin/perl
1134 @e2a = ( # this must be filled in
1135 );
1136 $_ = <> until ($mode,$file) = /^begin\s*(\d*)\s*(\S*)/;
1137 open(OUT, "> $file") if $file ne "";
1138 while(<>) {
1139 last if /^end/;
1140 next if /[a-z]/;
1141 next unless int(((($e2a[ord()] - 32 ) & 077) + 2) / 3) ==
1142 int(length() / 4);
1143 print OUT unpack("u", $_);
1144 }
1145 close(OUT);
1146 chmod oct($mode), $file;
1147
1148 Quoted-Printable encoding and decoding
1149 On ASCII-encoded platforms it is possible to strip characters outside
1150 of the printable set using:
1151
1152 # This QP encoder works on ASCII only
1153 $qp_string =~ s/([=\x00-\x1F\x80-\xFF])/sprintf("=%02X",ord($1))/ge;
1154
1155 Whereas a QP encoder that works on both ASCII and EBCDIC platforms
1156 would look somewhat like the following (where the EBCDIC branch @e2a
1157 array is omitted for brevity):
1158
1159 if (ord('A') == 65) { # ASCII
1160 $delete = "\x7F"; # ASCII
1161 @e2a = (0 .. 255) # ASCII to ASCII identity map
1162 }
1163 else { # EBCDIC
1164 $delete = "\x07"; # EBCDIC
1165 @e2a = # EBCDIC to ASCII map (as shown above)
1166 }
1167 $qp_string =~
1168 s/([^ !"\#\$%&'()*+,\-.\/0-9:;<>?\@A-Z[\\\]^_`a-z{|}~$delete])/sprintf("=%02X",$e2a[ord($1)])/ge;
1169
1170 (although in production code the substitutions might be done in the
1171 EBCDIC branch with the @e2a array and separately in the ASCII branch
1172 without the expense of the identity map).
1173
1174 Such QP strings can be decoded with:
1175
1176 # This QP decoder is limited to ASCII only
1177 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/ge;
1178 $string =~ s/=[\n\r]+$//;
1179
1180 Whereas a QP decoder that works on both ASCII and EBCDIC platforms
1181 would look somewhat like the following (where the @a2e array is omitted
1182 for brevity):
1183
1184 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr $a2e[hex $1]/ge;
1185 $string =~ s/=[\n\r]+$//;
1186
1187 Caesarean ciphers
1188 The practice of shifting an alphabet one or more characters for
1189 encipherment dates back thousands of years and was explicitly detailed
1190 by Gaius Julius Caesar in his Gallic Wars text. A single alphabet
1191 shift is sometimes referred to as a rotation and the shift amount is
1192 given as a number $n after the string 'rot' or "rot$n". Rot0 and rot26
1193 would designate identity maps on the 26-letter English version of the
1194 Latin alphabet. Rot13 has the interesting property that alternate
1195 subsequent invocations are identity maps (thus rot13 is its own non-
1196 trivial inverse in the group of 26 alphabet rotations). Hence the
1197 following is a rot13 encoder and decoder that will work on ASCII and
1198 EBCDIC platforms:
1199
1200 #!/usr/local/bin/perl
1201
1202 while(<>){
1203 tr/n-za-mN-ZA-M/a-zA-Z/;
1204 print;
1205 }
1206
1207 In one-liner form:
1208
1209 perl -ne 'tr/n-za-mN-ZA-M/a-zA-Z/;print'
1210
1212 To the extent that it is possible to write code that depends on hashing
1213 order there may be differences between hashes as stored on an ASCII-
1214 based platform and hashes stored on an EBCDIC-based platform. XXX
1215
1217 Internationalization (I18N) and localization (L10N) are supported at
1218 least in principle even on EBCDIC platforms. The details are system-
1219 dependent and discussed under the "OS ISSUES" in perlebcdic section
1220 below.
1221
1223 Perl may work with an internal UTF-EBCDIC encoding form for wide
1224 characters on EBCDIC platforms in a manner analogous to the way that it
1225 works with the UTF-8 internal encoding form on ASCII based platforms.
1226
1227 Legacy multi byte EBCDIC code pages XXX.
1228
1230 There may be a few system-dependent issues of concern to EBCDIC Perl
1231 programmers.
1232
1233 OS/400
1234 PASE The PASE environment is a runtime environment for OS/400 that
1235 can run executables built for PowerPC AIX in OS/400; see
1236 perlos400. PASE is ASCII-based, not EBCDIC-based as the ILE.
1237
1238 IFS access
1239 XXX.
1240
1241 OS/390, z/OS
1242 Perl runs under Unix Systems Services or USS.
1243
1244 chcp chcp is supported as a shell utility for displaying and
1245 changing one's code page. See also chcp(1).
1246
1247 dataset access
1248 For sequential data set access try:
1249
1250 my @ds_records = `cat //DSNAME`;
1251
1252 or:
1253
1254 my @ds_records = `cat //'HLQ.DSNAME'`;
1255
1256 See also the OS390::Stdio module on CPAN.
1257
1258 OS/390, z/OS iconv
1259 iconv is supported as both a shell utility and a C RTL routine.
1260 See also the iconv(1) and iconv(3) manual pages.
1261
1262 locales On OS/390 or z/OS see locale for information on locales. The
1263 L10N files are in /usr/nls/locale. $Config{d_setlocale} is
1264 'define' on OS/390 or z/OS.
1265
1266 VM/ESA?
1267 XXX.
1268
1269 POSIX-BC?
1270 XXX.
1271
1273 This pod document contains literal Latin 1 characters and may encounter
1274 translation difficulties. In particular one popular nroff
1275 implementation was known to strip accented characters to their
1276 unaccented counterparts while attempting to view this document through
1277 the pod2man program (for example, you may see a plain "y" rather than
1278 one with a diaeresis as in ye). Another nroff truncated the resultant
1279 manpage at the first occurrence of 8 bit characters.
1280
1281 Not all shells will allow multiple "-e" string arguments to perl to be
1282 concatenated together properly as recipes 0, 2, 4, 5, and 6 might seem
1283 to imply.
1284
1286 perllocale, perlfunc, perlunicode, utf8.
1287
1289 <http://anubis.dkuug.dk/i18n/charmaps>
1290
1291 <http://www.unicode.org/>
1292
1293 <http://www.unicode.org/unicode/reports/tr16/>
1294
1295 <http://www.wps.com/projects/codes/> ASCII: American Standard Code for
1296 Information Infiltration Tom Jennings, September 1999.
1297
1298 The Unicode Standard, Version 3.0 The Unicode Consortium, Lisa Moore
1299 ed., ISBN 0-201-61633-5, Addison Wesley Developers Press, February
1300 2000.
1301
1302 CDRA: IBM - Character Data Representation Architecture - Reference and
1303 Registry, IBM SC09-2190-00, December 1996.
1304
1305 "Demystifying Character Sets", Andrea Vine, Multilingual Computing &
1306 Technology, #26 Vol. 10 Issue 4, August/September 1999; ISSN 1523-0309;
1307 Multilingual Computing Inc. Sandpoint ID, USA.
1308
1309 Codes, Ciphers, and Other Cryptic and Clandestine Communication Fred B.
1310 Wrixon, ISBN 1-57912-040-7, Black Dog & Leventhal Publishers, 1998.
1311
1312 http://www.bobbemer.com/P-BIT.HTM <http://www.bobbemer.com/P-BIT.HTM>
1313 IBM - EBCDIC and the P-bit; The biggest Computer Goof Ever Robert
1314 Bemer.
1315
1317 15 April 2001: added UTF-8 and UTF-EBCDIC to main table, pvhp.
1318
1320 Peter Prymmer pvhp@best.com wrote this in 1999 and 2000 with CCSID 0819
1321 and 0037 help from Chris Leach and Andre Pirard A.Pirard@ulg.ac.be as
1322 well as POSIX-BC help from Thomas Dorner Thomas.Dorner@start.de.
1323 Thanks also to Vickie Cooper, Philip Newton, William Raffloer, and Joe
1324 Smith. Trademarks, registered trademarks, service marks and registered
1325 service marks used in this document are the property of their
1326 respective owners.
1327
1328
1329
1330perl v5.16.3 2013-03-04 PERLEBCDIC(1)